2010 ANNUAL GROUNDWATER MONITORING REPORT

Boeing Former C-6 Facility 19503 South Normandie Avenue Los Angeles, California

May 27, 2010

PREPARED FOR

The Boeing Company 4501 Conant Street Building 851, M/C D851-0097 Long Beach, California 90808

PREPARED BY

Avocet Environmental, Inc. 16 Technology Drive, Suite 154 Irvine, California 92618-2327

Project No. 1155.012

May 27, 2010

Project No. 1155.012

Ms. Ana Townsend CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD LOS ANGELES REGION 320 West 4th Street, Suite 200 Los Angeles, California 90013

> 2010 Annual Groundwater Monitoring Report Boeing Former C-6 Facility

> > 19503 South Normandie Avenue Los Angeles, California

Dear Ms. Townsend:

Enclosed is the 2010 Annual Groundwater Monitoring Report for the subject site. This monitoring report includes data gathered during the annual 2010 site-wide groundwater monitoring event conducted at the Boeing Former C-6 Facility located at 19503 South Normandie Avenue in Los Angeles, California. If you have any questions or require additional information, please do not hesitate to call.

Respectfully submitted,

AVOCET ENVIRONMENTAL, INC.

Muhael a Kendina

Michael A. Rendina, P.G.

Principal

MAR:sh

Enclosure

cc: Ms. Jennifer Wiley – The Boeing Company (PDF)

Mr. Joe Weidmann – Haley & Aldrich (PDF)

Mr. Ravi Subramanian – Camp Dresser & McKee, Inc. (PDF)

S. Projects 1155 Boeing Former C-6 Facility Groundwater Monitoring March 2010 2010 Groundwater Monitoring Report 052710 docx

Page i May 27, 2010

TABLE OF CONTENTS

LIST OF TABLES	iii
LIST OF FIGURES	iv
LIST OF ABBREVIATIONS AND ACRONYMS	
1.0 INTRODUCTION	
1.1 BACKGROUND	
1.1.1 Site Geology	1
1.1.2 Site Hydrogeology	2
1.2 Groundwater Monitoring Well Summary	3
1.3 REPORT ORGANIZATION	3
2.0 ANNUAL GROUNDWATER MONITORING	5
2.1 Per-Etrin Activities	6
2.2 WATER LEVEL GAUGING AND WELLHEAD VAPOR MONITORING	6
2.2 Water Level Gauging and Wellhead Vapor Monitoring 2.2.1 Wellhead Vapor Monitoring	6
2.2.2 Water Level Measurements	6
2.3 WELL PURGING	6
2.3.1 Low-flow Purging	7
2.3.2 Additional Purging	7
2.4 SAMPLING AND ANALYSIS	8
2.5 MISCELLANEOUS	9
2.5.1 Equipment Decontamination 2.5.2 Waste Management 2.5.3 Project Database 2.6 QUALITY ASSURANCE/QUALITY CONTROL	9
2.5.2 Waste Management	9
2.5.3 Project Database	9
2.6 QUALITY ASSURANCE/QUALITY CONTROL	9
2.6.1.1 Duplicate Samples	9
2.0.1.2 Equipment/Kinsate Branks	IU
2.6.1.3 Trip Blanks	10 10
3.1 Groundwater Elevations	11
3.1.2 C-Sand	
3.1.2 C-Sallu.	11
3.1.3 Gage Aquifer	11 12
3.3 GROUNDWATER QUALITY	12
3.3.1 B-Sand	12
3.3.2 C-Sand	13
3.3.3 Gage Aquifer	13

Boeing Former C-6 Facility Los Angeles, California	Page ii May 27, 2010
	Page
3.4 RECOMMENDATION	13
REFERENCES	15
TABLES	
FIGURES	
APPENDIX A: FIELD FORMS	
APPENDIX B: HISTORICAL GROUNDWA	FER ELEVATION DATA
APPENDIX C: GROUNDWATER LEVEL H	YDROGRAPHS
APPENDIX D: HISTORICAL GROUNDWA	ΓER VOC DATA
APPENDIX E: WATER QUALITY HYDROC	GRAPHS
APPENDIX F: DATA VALIDATION RECOR	XDS
APPENDIX G: PURGE WATER NONHAZA	RDOUS WASTE MANIFEST
APPENDIX H: CD CONTAINING PDF VERS LABORATORY REPORTS	SION OF SUBJECT REPORT AND

Boeing Former C-6 Facility Los Angeles, California Page iii May 27, 2010

LIST OF TABLES

Table No.	<u>Title</u>
1	Groundwater Monitoring Well Completion Details
2	March 2010 Site-Wide Groundwater Monitoring Program
3	Groundwater Elevations
4	Summary of Field Parameters
5	Summary of Volatile Organic Compound Analytical Results
6	Data Precision for Sample Duplicates
7	Summary of Semivolatile Organic Compound Analytical Results
8	Summary of Pesticides and PCB Analytical Results
9	Summary of Metals and Hexavalent Chromium Analytical Results
10	Summary of 1,4-Dioxane, NDMN, Perchlorate, and p CBSA Analytical Results
11	Summary of Inorganic Analytical Results
12	Summary of Dissolved Hydrocarbon Gases Analytical Results

Boeing Former C-6 Facility Los Angeles, California Page iv May 27, 2010

LIST OF FIGURES

Figure No.	<u>Title</u>
<u>i</u>	Site Location Map
2	Groundwater Monitoring Well Location Map
3	B-Sand Groundwater Elevations, March 2010
4	C-Sand Groundwater Elevations, March 2010
5	Gage Aquifer Groundwater Elevations, March 2010
6	B-Sand Groundwater Distribution of TCE, March 2010
7	B-Sand Groundwater Distribution of 1,1-DCE, March 2010
8	C-Sand Groundwater Distribution of TCE, March 2010
Q	C-Sand Groundwater Distribution of 1.1-DCF March 2010

Boeing Former C-6 Facility Page v
Los Angeles, California May 27, 2010

LIST OF ABBREVIATIONS AND ACRONYMS

ASTM ASTM International
bgs below ground surface
B-Sand Middle Bellflower B-Sand
CAM California Assessment Manual
pCBSA 4-chlorobenzenesulfonic acid

COC chain-of-custody

COD chemical oxygen demand C-Sand Middle Bellflower C-Sand

1,1-DCA1,1-dichloroethane1,2-DCA1,2-dichloroethane1,1-DCE1,1-dichloroethenecis-1,2-DCEcis-1,2-dichloroethenetrans-1,2-DCEtrans-1,2-dichloroetheneDHGdissolved hydrocarbon gases

DO dissolved oxygen EC electrical conductivity

EPA U.S. Environmental Protection Agency

ILM Industrial Light Metals

LARWQCB California Regional Water Quality Control Board, Los Angeles Region

LBF Lower Bellflower aquitard LDC Laboratory Data Consultants

l/min liter per minute

MBFM Middle Bellflower Mud mg/l milligram per liter

MRP Monitoring and Reporting Program

mS/cm millisiemen per centimeter

MSL mean sea level

mV millivolt

NDMA n-nitrosodimethylamine
NTU nephelometric turbidity unit
ORP oxidation reduction potential
PCB polychlorinated biphenyls
PID photoionization detector

QA/QC quality assurance/quality control

RPD relative percent difference

SVOC semivolatile organic compound

TCE trichloroethene

TDS total dissolved solids
TSS total suspended solids
UBF Upper Bellflower aquitard

μg/l microgram per liter

	Monitoring Report	2010 Annual Groundwa	
Page vi May 27, 2010			Boeing Former C-6 F Los Angeles, Californ
- 1 - 2 - 3 - 4 - 5 - 5 - 6 - 7		volatile organic compound	VOC
	Š	Waste Discharge Requirer	WDR
	<u> </u>		
	**		
	1909,		

	ration (11 to 1), a communication and a communication of the communicati		
aaaaaaa Mili maa saasaa ah	1900. aast 1900. jõga vateluuden kasta taleet kasta taleet kasta taleet kasta taleet kasta taleet kasta taleet 1900. aast 1900. aasta ja 1900. aasta kasta taleet kasta taleet kasta taleet kasta taleet kasta taleet kasta t		

Page 1 May 27, 2010

1.0 INTRODUCTION

Avocet Environmental, Inc. (Avocet), on behalf of The Boeing Company (Boeing), has prepared this report for annual 2010 site-wide groundwater monitoring conducted at the Boeing Former C-6 Facility (the site) in Los Angeles, California (Figure 1). Annual monitoring included gauging and sampling wells site-wide. Groundwater monitoring was performed from March 22 through March 26, 2010 and was conducted in accordance with the following work plan.

• 2010 Groundwater Monitoring Work Plan (the Work Plan; Avocet, February 15, 2010)

This Work Plan was approved for implementation by the California Regional Water Quality Control Board, Los Angeles Region (LARWQCB) in a letter to Boeing dated March 4, 2010.

The site-wide program is separate from groundwater monitoring conducted at the site under Monitoring and Reporting Program (MRP) No. CI-9310 and Individual Waste Discharge Requirements (WDR) Order No. R4-2007-0040 related to groundwater remediation. As such, the semiannual (Building 2 area) WDR monitoring, conducted concurrently with the subject annual site-wide monitoring event, will be presented in a separate report.

This report identifies the groundwater monitoring wells that were sampled and the constituents and parameters that were measured for the annual site-wide monitoring program. The remainder of this report presents the site background, the site-wide groundwater monitoring activities conducted in March 2010, and a summary of the results.

1.1 BACKGROUND

The Former C-6 Facility comprises approximately 170 acres and is bounded by 190th Street to the north; Normandie Avenue to the east; former industrial parcels, including the Montrose Chemical Superfund site (Montrose), to the south; and the former Industrial Light Metals (ILM) site to the west (Figure 2). Between approximately 1952 and 1992, the site was used for aerospace manufacturing operations. Operations at the site ceased in the mid-1990s, the buildings were demolished, and most of the parcels were sold and redeveloped for commercial/light industrial uses. Environmental studies conducted at the site since the 1980s indicate that groundwater beneath the site contains volatile organic compounds (VOCs). These VOCs have been the focus of past and continuing remediation efforts at the site. More than 50 groundwater monitoring events have been performed at the site since 1987.

1.1.1 Site Geology

The site is located on the Torrance Plain physiographic area of the West Coast Basin and is underlain by the Lakewood Formation. The Lakewood Formation is subdivided into two principal hydrostratigraphic units: the Bellflower unit and the Gage aquifer. The Bellflower unit is further subdivided into the following:

Boeing Former C-6 Facility Los Angeles, California Page 2 May 27, 2010

- Upper Bellflower aquitard
- Middle Bellflower B-Sand
- Middle Bellflower Mud
- Middle Bellflower C-Sand (C-Sand)
- Lower Bellflower aquitard

The Upper Bellflower aquitard (UBF) comprises the upper 20 to 60 feet of the Bellflower unit and consists of fine-grained soils (predominantly fine sands, silts, and clays), which thicken to the east. A sandy zone (Middle Bellflower Sand) that dips downward to the east underlies the fine-grained soils. The Middle Bellflower Sand is generally 60 to 100 feet thick and is a massive, light yellowish-brown, fine to medium sand with discontinuous layers of fine-grained sediment (silt and clay) that also dip downward to the east. A fine-grained layer, referred to as the Middle Bellflower Mud (MBFM), locally interrupts this sand. The top sand subunits are referred to as the B-Sand and the bottom sand subunits as the C-Sand. The MBFM is discontinuous across the site, but where present, ranges in thickness from about 1 foot to 13 feet and is comprised of laminated clay, silt, and very fine sand. The MBFM thins toward the north and appears to be absent in the northern portion of the site (most of the former Building 1/36 portion of the site).

The Middle Bellflower B-Sand is underlain by the Lower Bellflower aquitard (LBF), another fine-grained zone, at depths ranging from about 120 to 140 feet below ground surface (bgs). The fine-grained LBF ranges in thickness from 10 to 20 feet and appears to be continuous across the site. The LBF separates the Middle Bellflower Sand from the underlying Gage aquifer.

1.1.2 Site Hydrogeology

Groundwater at the site is encountered at depths of approximately 55 to 70 feet bgs in the relatively permeable sediments of the Bellflower unit. Most of the groundwater monitoring wells at the site are installed in the B- and C-Sands within the Bellflower unit. Four wells have been installed onsite within the underlying Gage aquifer.

The B-Sand is found at approximate depths of 55 to 70 feet bgs at the site and is generally 25 to 40 feet thick. The B-Sand consists of predominately interbedded fine sands and silts. As shown in Figure 3, groundwater flow within the B-Sand is predominantly toward the south, with an average gradient of 0.0006 ft/ft.

The C-Sand is found at approximate depths of 90 to 110 feet bgs at the site and extends to depths of 120 to 140 feet bgs. The C-Sand consists largely of interbedded very fine sands with silt and clay. As shown in Figure 4, groundwater flow within the C-Sand is predominantly to the south and south-southwest, with an average gradient of 0.0007 ft/ft.

The Gage aquifer in the site vicinity occurs at an approximate depth of 150 feet bgs and ranges in thickness from 40 to 50 feet (Haley & Aldrich, December 8, 2005). The Gage aquifer is comprised largely of sand. Groundwater flow within the Gage aquifer is generally to the southeast, with an average gradient of 0.0006 ft/ft (Figure 5).

Page 3 May 27, 2010

1.2 GROUNDWATER MONITORING WELL SUMMARY

Groundwater wells installed at the site are classified as follows:

- Wells installed by Boeing and its predecessors in support of groundwater monitoring and bioremediation pilot testing (prefixes include AW¹, CMW, DAC, EWB, EWC, IRZ, IWC, MWB, MWC, MWG, TMW, and WCC).
- Groundwater monitoring wells installed by ILM for investigations at its facility (prefix BL).
- Groundwater monitoring wells installed by Montrose for investigations at its facility (prefix XMW).

Groundwater investigations began in early 1987 with the installation of the first groundwater monitoring wells. Over the years, more than 95 groundwater monitoring wells were installed at the site. To accommodate redevelopment, a number of wells were destroyed in accordance with regulatory guidance, though certain wells were replaced to maintain the monitoring record.

As of March 2010, a total of 78 groundwater monitoring wells exist at the site; this includes two Montrose (XMW) wells and one ILM (BL) well. Completion details for all 78 groundwater monitoring wells are included in Table 1 and the well locations are shown in Figure 2.

More than 50 groundwater monitoring events have taken place at the site since monitoring began in 1987. All of the groundwater monitoring wells were typically sampled during each groundwater monitoring event, performed quarterly, until 1997. In 2000, the groundwater monitoring program was modified to two events per year: one full annual monitoring event and one plume-boundary-specific semiannual monitoring event (Kennedy/Jenks Consultants, December 15, 2000).

1.3 REPORT ORGANIZATION

Section 2.0 of this report describes the groundwater monitoring and sampling activities and quality assurance/quality control (QA/QC) measures. Summaries of the field and laboratory water quality data are provided in Section 3.0. The text is followed by references, tables, figures, and appendices.

Appendix A contains the groundwater sampling forms and field data. Appendix B presents historical groundwater level data. Water level hydrographs for representative wells are presented in Appendix C. Historical groundwater VOC analytical results are tabulated in Appendix D. Appendix E presents water quality hydrographs for prevalent VOCs in select plume boundary and site perimeter wells. The data validation records are included in Appendix F and a copy of the manifest documenting purge water disposal is presented in Appendix G. A CD containing a

¹ "AW" wells are injection wells exposed at the surface for monitoring purposes. These are separate from the other AW wells that have not been exposed.

	2010 A	Annual Grou	ındwater Monit	oring Report	·	
Boeing Former C-C Los Angeles, Calif						Page 4 May 27, 2010
DDE worsion	of the subject re-	part and ac	union of the lab	aratami rana	ento and ah	ain of quatods:
	of the subject rej		pies of the lat	oratory repo	orts and ch	ain-of-custody
	of the subject rep nted in Appendix		ppies of the lab	oratory repo	orts and ch	ain-of-custody
			pies of the lat	oratory repo	orts and ch	ain-of-custody
			ppies of the lat	oratory repo	orts and ch	ain-of-custody
			ppies of the lat	oratory repo	orts and ch	ain-of-custody
			ppies of the lab	ooratory repo	orts and ch	ain-of-custody
			ppies of the lat	ooratory repo	orts and ch	ain-of-custody
			ppies of the lat	ooratory repo	orts and ch	ain-of-custody
			ppies of the lat	ooratory repo	orts and ch	ain-of-custody

Page 5 May 27, 2010

2.0 ANNUAL GROUNDWATER MONITORING

The site-wide annual monitoring event was performed from March 22 through March 26, 2010. Groundwater sampling was performed at 69 groundwater monitoring wells, including 6 wells sampled under the WDR program, as indicated in Tables 2a and 2b and shown in Figure 2. Also, water level gauging was conducted at one additional well. Two wells identified in the Work Plan for gauging and sampling in March 2010, Montrose Wells XMW-09 and XMW-19, were neither gauged nor sampled due to new access restrictions imposed by Montrose. Given the long-term record of consistent results from these wells, the absence of one or more records while access is negotiated is not considered problematic. Monitoring during the 2010 annual event consisted of the following activities:

- Pre-field activities including notification to the stakeholders.
- Measuring the concentrations of VOCs within the "headspace" of 70 groundwater monitoring wells using a calibrated photoionization detector (PID).
- Measuring static groundwater in 70 groundwater monitoring wells.
- Measuring field parameters, including pH, temperature, electrical conductivity (EC), turbidity, dissolved oxygen (DO), and oxidation reduction potential (ORP), using a calibrated sonde and flow-through cell at 69 wells.
- Analyzing approximately 10 percent of the samples in the field using a CHEMetrics, Inc. test kit (K-7512 or K-7540) as a QA check on DO measurements.
- Collecting groundwater samples from the 69 monitoring wells and submitting the samples to an analytical laboratory for analysis of VOCs using U.S. Environmental Protection Agency (EPA) Method 8260B.
- In support of feasibility evaluations, groundwater samples from 54 of the 69 wells sampled as part of the annual event were submitted to an analytical laboratory and evaluated for one or more of a variety of analytes as detailed in Tables 2a and 2b.
- Collecting QC samples consisting of duplicates (1 per 20 wells) and equipment/ rinsate and trip blanks.
- Perform data validation on approximately 10 percent of the laboratory data for the primary samples.

Each of these activities is described in further detail below.

Boeing Former C-6 Facility Los Angeles, California Page 6 May 27, 2010

2.1 PRE-FIELD ACTIVITIES

Prior to entering the field, interested stakeholders, including the owners and/or tenants of properties on the site requiring access, the environmental contractors for adjacent property owners (ILM [TRC Companies, Inc.]) with wells on the site that are part of the program, as well as staff of the LARWQCB were notified of the planned activities and schedule. In addition, the project environmental testing laboratory, TestAmerica, was notified of the schedule and laboratory program, and the appropriate sample containers were requested by way of a Laboratory Task Order.

2.2 WATER LEVEL GAUGING AND WELLHEAD VAPOR MONITORING

Prior to any groundwater sampling activities, wellhead vapor concentrations and depths to groundwater were measured within a single 12-hour period on March 22, 2010.

2.2.1 Wellhead Vapor Monitoring

The concentration of VOCs within the "headspace" of the monitoring wells is routinely measured as part of the fluid level gauging process at the Former C-6 Facility. The headspace concentration is measured immediately upon removal of the well cap by holding the intake of a PID just inside the monitoring well casing and recording the maximum reading on the Groundwater Monitoring Well Gauging Sheet (Appendix A).

2.2.2 Water Level Measurements

Water levels were then measured to the nearest one-hundredth of a foot from a surveyed reference point on top of the casing using a conductance-actuated well sounder. Care was taken to ensure that all down-hole equipment was properly calibrated and thoroughly decontaminated prior to use in any well. Water level measurements were recorded on the Groundwater Monitoring Well Gauging Sheets (Appendix A), as well as in an electronic format for upload to the project database. Also recorded on the gauging sheets was information on the surface condition of each well and any repairs/modifications required or that may have been conducted.

2.3 WELL PURGING

During the annual 2010 site-wide event, each sampling crew sampled groundwater monitoring wells in the order of increasing concentrations. The sampling order, shown in Table 2, was determined based on the most recent groundwater analytical data available and was honored for wells sampled using portable equipment.

Prior to collecting groundwater samples for chemical analysis, wells scheduled to be sampled were purged to assure representative samples were collected from the formation. With two exceptions, all site-wide monitoring wells were also purged using low-flow methodology. Due to the small (<0.75-inch) diameter of the well casings, Wells IRZB0095 and IRZB0081 were purged for sampling with a Waterra inertial pump and dedicated tubing using conventional (i.e., 3 to 5 wetted casing volumes) purging methods. Low-flow and conventional purging and sampling methods are described below.

Page 7 May 27, 2010

2.3.1 Low-flow Purging

All monitoring wells sampled using the low-flow (minimal drawdown) method utilized a QED low-flow pneumatic (bladder) pump with adjustable flow rate controls to purge each well prior to collecting the samples. At each well, the pumps were installed with the intake positioned near the mid-point of the well screen. During purging, the flow rate at each location was maintained between 0.20 and 0.40 liter per minute (l/min) and the resultant drawdowns were well within ASTM International (ASTM) standards for all wells (ASTM, March 2002). QED MP20 or YSI 556 Water Quality Monitoring Systems with flow-through cells were used to record field water quality parameters (i.e., temperature, pH, EC, ORP, and DO) during the purging process. Also, for each well sampled, a Lamotte 2020 or HACH 2100P turbidimeter was used to record turbidity. The multiparameter meters and turbidimeters were calibrated in accordance with the manufacturer's instructions. Purging was considered complete upon stabilization of the water quality parameters. Water quality parameters were considered stable when three consecutive readings made several minutes apart fell within the following ranges:

- ±0.2 pH units
- ±3 percent of the EC measurement or 0.02 milliSiemen per centimeter (mS/cm), whichever is greater
- ±10 percent of the DO reading or ±0.2 milligram per liter (mg/l), whichever is greater
- ±20 millivolt (mV) for ORP measurements
- ± 10 percent of the turbidity measurement or ± 1.0 nephelometric turbidity unit (NTU), whichever is greater

As an additional calibration check, DO measurements were periodically field checked using a CHEMetrics test kit. Finally, upon completion of purging, samples from 25 wells were monitored for ferrous iron (Fe(II)) using a HACH DR890 colorimeter. Stabilized field water quality indicator parameters are summarized in Table 4 and the Groundwater Sampling Data Sheets are included in Appendix A.

2.3.2 Additional Purging

Wells IRZB0081 and IRZB0095 were purged to remove standing water in the well casing and promote the inflow of representative groundwater from the surrounding formation. The monitoring wells were purged using an inertial pump that operates by successively lowering and raising a small-diameter tube fitted with a bottom foot valve. The foot valve opens during the down-stroke and closes on the up-stroke, enabling water to progressively rise in the tube to discharge at surface. Well purging continued until three wetted casing volumes had been removed from the well. Wetted casing volumes were calculated using the static water level, total well depth, and casing diameter as indicated below:

Boeing Former C-6 Facility Los Angeles, California Page 8 May 27, 2010

$$V = \pi r^2 h (7.48)$$

where:

V = one wetted casing volume (gallons)

r = inner radius of well casing (in feet)

h = length of water column (in feet)

During purging, the volume of water extracted was measured in a graduated container.

2.4 SAMPLING AND ANALYSIS

When the purging criteria were achieved at each well, samples of the groundwater were collected from the dedicated tubing into appropriate laboratory-supplied containers. Each sample container was labeled in accordance with Boeing's Data Management Plan (CH2M Hill, 2007), and immediately placed on ice in a cooler. Under proper chain-of-custody protocols, the samples were transported by courier to TestAmerica Laboratories, Inc. (TestAmerica) in Irvine, California, a California-certified analytical laboratory.

All groundwater samples and QA/QC samples collected during the course of the 2010 annual site-wide monitoring program were analyzed by TestAmerica for VOCs using EPA Method 8260B. In addition, to obtain additional groundwater geochemical information to assist in evaluation of remedial options, a number of supplemental analyses were added to the sampling program. The supplemental analyses and laboratory program are summarized in Tables 2a and 2b and included analyzing samples from select wells across the site for one or more of the following:

- Dissolved hydrocarbon gases (DHGs ethane, ethylene, and methane) using RSK 175
- Semivolatile organic compounds (SVOCs), including 1,4-dioxane, using EPA 8270C
- N-Nitrosodimethylamine (NDMA) using EPA 1625 MOD
- California Assessment Manual (CAM) Title 22 metals using EPA 245.1/200.7
- Flashpoint using EPA 1010
- Cyanides (total) using SM4500CN-E
- Sulfides (dissolved) using SM4500-S D
- Pesticides and polychlorinated biphenyls (PCBs) using EPA 608
- Chemical oxygen demand (COD) using SM5220D
- Total suspended solids (TSS) using SM2540D
- Hexavalent chromium using EPA 7199
- 4-Chlorobenzenesulfonic acid (pCBSA) using EPA 314.0 MOD
- Perchlorate using EPA 314.0
- Boron using EPA 200.7
- Anions (chloride, nitrate, nitrite, and sulfate) using EPA 300.0
- Total dissolved solids (TDS) using SM2540C

Boeing Former C-6 Facility Los Angeles, California Page 9 May 27, 2010

It is noted that samples collected from the WDR monitoring wells were also analyzed for additional parameters in accordance with the MRP. The results of these additional analyses are reported separately under the WDR reporting program.

2.5 MISCELLANEOUS

2.5.1 Equipment Decontamination

Nondedicated equipment used for well purging and sampling was cleaned prior to and between groundwater monitoring wells with an $Alconox^{TM}$ solution (or equivalent), then double-rinsed with tap water and deionized or distilled water to reduce the potential for cross-contamination.

2.5.2 Waste Management

Purge water generated during groundwater monitoring activities was placed within appropriately labeled 55-gallon drums and temporarily stored adjacent to the treatment compound pending profiling and final disposition. Approximately 90 gallons of purge and decontamination water were generated during the March 2010 monitoring event. The water was profiled and determined to be nonhazardous. A nonhazardous waste manifest documenting the transport and disposal of this water is presented in Appendix G.

2.5.3 Project Database

Prior to initiation of groundwater monitoring activities, the sampling requirements were incorporated into a field database. The field database was created to track each well sampled, to verify that samples collected from each well were being submitted to the analytical laboratories for the correct suite of analyses, and to assist in the management of field data required to be uploaded to the project database, currently being maintained by CRI+IGEN, of Santa Ana, California. Additionally, the field database was used to prepare "pre-sampling packets" for each field sampling crew with properly labeled monitoring sheets and pre-filled-out sample labels for each of the target wells. At the end of each day, the field database was then used to prepare the chain-of-custody (COC) record and generate the field monitoring log and the daily sample log, which were uploaded to the project database. The COC and sample log were prepared using the same data input to eliminate potential transcription errors. The field monitoring log was transcribed from field monitoring forms (Appendix A) by field personnel and included depth to water and stabilized field water quality parameters for each well sampled during the day.

Upon completion of sample analyses by the analytical laboratories, the primary laboratory, TestAmerica, of Irvine, California, uploaded the results of analyses to the project database.

2.6 QUALITY ASSURANCE/QUALITY CONTROL

2.6.1.1 Duplicate Samples

Four duplicate groundwater samples were collected as a check for sample homogeneity and laboratory precision. The samples were from Wells MWC016, MWC022, MWC024, and WCC_06S, and were collected, packaged, and sealed in the same manner as the primary samples. The duplicate samples were analyzed for VOCs using EPA Method 8260B. A

Boeing Former C-6 Facility Los Angeles, California Page 10 May 27, 2010

comparison of the primary and duplicate analytical results is provided in Table 6. As shown in Table 6, the precision for the duplicate samples ranged from 0 to 20 relative percent difference (RPD). Generally, for Boeing sites, precision criteria for VOCs is 25 percent RPD (Ogden, 2000). The mean RPD for the 21 analytes in the four samples is 7 percent; well within the range of acceptable precision.

2.6.1.2 Equipment/Rinsate Blanks

Three equipment blank samples were collected during the annual 2010 sampling event, one for each day that groundwater samples were collected using portable equipment. The equipment blanks were collected from sampling equipment that was cleaned and reused in the field as a check for cross-contamination. Following decontamination procedures, deionized water provided by the laboratory was used to fill or rinse the sampling equipment after the equipment had been cleaned, then collected in sample containers. The equipment/rinsate blanks were analyzed for VOCs using EPA Method 8260B. Analytical results indicated that no VOCs were detected in any of the three equipment blank samples.

2.6.1.3 Trip Blanks

One trip blank was analyzed for each day that groundwater samples were submitted to the laboratory (four trip blanks total). The trip blanks, prepared in a clean environment, were provided by the analytical laboratory and kept in the cooler used to ship the samples. The trip blanks, which provide a check for contamination prior to and during transport, were analyzed for VOCs using EPA Method 8260B. VOCs were not detected in any of the four trip blank samples.

2.6.1.4 Data Validation

Data validation was performed by Laboratory Data Consultants, Inc. (LDC), of Carlsbad, California. A copy of the data validation report for samples collected from Wells EWB002, WCC_06S, MWB027, AW0074UB, IRZB0095, MWC022, and WCC_07S is attached as Appendix F. The validation process followed the EPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (EPA, October 1999). Approximately 10 percent of the laboratory data was reviewed to verify that the data are of acceptable quality.

Seven samples collected on March 25, 2010 were selected for validation. Five of the samples (EWB002, WCC_06S, MWB027, AW0074UB, and IRZB0095) were subjected to Tier 1 validation, one (MWC022) to Tier 2 validation, and one (WCC_07S) underwent Tier 3 review. As indicated in LDC's validation report (Appendix F), several data quality criteria, including percent differences relative to initial and continuing calibration checks and percent recoveries of certain VOCs in matrix spike/matrix spike duplicate and laboratory control samples, resulted in the application of data qualifiers (i.e., flags) to certain analytes. Overall, the criteria exceedances do not appear to have negatively impacted the analytical results, particularly the principal compounds, including trichloroethene (TCE) and 1,1-dichloroethene (1,1-DCE). Therefore, based on the results of the data validation, the data are considered usable for project purposes.

Page 11 May 27, 2010

3.0 GROUNDWATER MONITORING RESULTS

This section presents an evaluation of the groundwater monitoring and sampling results for the site-wide annual monitoring event performed from March 22 through March 26, 2010. Included in this evaluation are discussions of groundwater elevations and groundwater quality in the B-Sand, C-Sand, and Gage aquifer water-bearing units.

3.1 GROUNDWATER ELEVATIONS

Prior to groundwater sampling, each of the site-wide monitoring wells was gauged for depth to groundwater and total depth, measured relative to the top of the well casings, on March 22, 2010. Well completion details, including the reference elevations used to calculate groundwater elevations, are provided in Table 1. The water levels were measured using electric well sounders immediately after accessing each well and prior to any artificial water level disturbance. Groundwater elevations were calculated in feet from mean sea level (feet MSL) by subtracting the depth to groundwater in each well from the surveyed top of casing elevation. Copies of the field water level measurement forms are included in Appendix A. Groundwater monitoring well locations are shown in Figure 2. A summary of the groundwater elevations for March 2010 is presented in Table 3. Historical water level data are presented in Appendix B. Groundwater elevation hydrographs for select B-Sand and C-Sand wells and the Gage aquifer wells are included in Appendix C.

3.1.1 B-Sand

The depth to groundwater for wells screened in the B-Sand ranged from 56.8 to 66.3 feet below the top of casings, which corresponds to groundwater elevations ranging from -7.44 to -5.46 feet MSL. B-Sand groundwater elevation contours generated from the March 2010 water level data are presented in Figure 3. The average hydraulic gradient in the B-Sand across the site is approximately 0.0006 ft/ft. As shown in Figure 3, groundwater flow direction in the B-Sand is generally to the south. The groundwater contours depict a localized groundwater mound surrounding the Building 1/36 area amendment injection wells, an artifact of the recirculation activities that were concluded on July 31, 2008 (Avocet, January 26, 2009).

3.1.2 C-Sand

The depth to groundwater for wells screened in the C-Sand ranged from 58 to 63.2 feet bgs, which corresponds to groundwater elevations ranging from -7.91 to -6.33 feet MSL. Groundwater elevation contours generated from the March 2010 water level data are presented in Figure 4. At the site, groundwater generally flows to the south and south-southwest, with an average hydraulic gradient of approximately 0.0007 ft/ft.

3.1.3 Gage Aquifer

The depth to groundwater in the four Gage aquifer wells ranged from 60.6 to 63.6 feet bgs, which corresponds to groundwater elevations ranging from -8.84 to -8.36 feet MSL. Groundwater elevation contours generated from the March 2010 water level data are presented in

Page 12 May 27, 2010

Figure 5. The average hydraulic gradient in the Gage aquifer at the site is approximately 0.0006 ft/ft. The groundwater flow direction is generally toward the southeast.

3.2 FIELD WATER QUALITY PARAMETERS

Field water quality parameters, including pH, DO, ORP, EC, turbidity, and temperature were measured during purging of the groundwater monitoring wells. Copies of the field groundwater sampling data sheets for the March 2010 site-wide sampling event are provided in Appendix A. Table 4 presents a summary of the stabilized field water quality parameters.

3.3 GROUNDWATER QUALITY

Each of the site-wide B-Sand, C-Sand, and Gage aquifer wells sampled were analyzed for VOCs using EPA Method 8260B. Additionally, 54 wells located throughout the site and completed in all three of the water-bearing units were analyzed for one or more of a variety of analytes, as described in Section 2.4 and summarized in Tables 2a and 2b. The results of VOC sample analyses are summarized in Table 5. SVOC sample analyses are summarized in Table 7 and pesticide/PCB analytical results are presented in Table 8. Table 9 summarizes the metals (17 CAM plus boron and hexavalent chromium) analytical results, and Table 10 summarizes the results of 1,4-dioxane, NDMA, perchlorate, and pCBSA analyses. Table 11 presents the results of various inorganic tests, including TDS, TSS, and COD, and the DHG results are summarized in Table 12. A historical summary of select VOCs in groundwater is presented in Appendix D. Concentration-versus-time graphs for prevalent VOCs in select plume and property boundary and Gage aquifer wells are presented in Appendix E. Copies of the laboratory analytical reports are included on the CD in Appendix H.

3.3.1 B-Sand

A total of 43 wells completed in the B-Sand were sampled in March 2010 as part of the annual site-wide monitoring event. TCE was the most prevalent VOC found in the B-Sand, both in terms of concentration and frequency of detection. Specifically, TCE was detected in 41 of the 43 B-Sand wells sampled in March 2010, with a maximum detected concentration of 12,000 µg/l in Well IRZMW003A, located within the former Building 2 source area. The distribution of TCE in the B-Sand wells is depicted in Figure 6.

1,1-DCE, cis-1,2-dichloroethene (cis-1,2-DCE), and chloroform were the next most prevalent compounds and were found in 36, 33 and 32 of the 43 B-Sand wells, respectively. 1,1-DCE was detected at a maximum concentration of 11,000 micrograms per liter (µg/l) in Well WCC_03S, located in the former Building 1/36 source area. The distribution of 1,1-DCE in the B-Sand wells is shown in Figure 7. As shown in Figure 7, 1,1-DCE concentrations are highest in the northern half of the site, particularly near the former Building 1/36 area. Concentrations of cis-1,2-DCE ranged from an estimated 0.64 µg/l to 2,900 µg/l. The highest concentration of cis-1,2-DCE was detected in a well monitoring the former Building 2 source area (IRZMW002A). Concentrations of chloroform ranged from an estimated 0.36 µg/l to 2,300 µg/l. The highest concentration of chloroform was detected in a well located near the southern margin of the site, immediately north of the Montrose site (MWB019).

Boeing Former C-6 Facility Los Angeles, California Page 13 May 27, 2010

As shown in Table 5, other prevalent VOCs include 1,1-dichloroethane (1,1-DCA), 1,2-dichloroethane (1,2-DCA), benzene, tetrachloroethene, toluene, *trans*-1,2-dichloroethene (*trans*-1,2-DCE), and vinyl chloride.

3.3.2 C-Sand

During the March 2010 site-wide monitoring event, 21 wells completed in the C-Sand were sampled and analyzed for VOCs. Six of these wells were sampled in conjunction with WDR monitoring associated with the bioremediation pilot test being conducted in the former Building 2 area.

TCE was the most prevalent VOC found in the C-Sand, both in terms of concentration and the frequency of detections. The distribution of TCE in the C-Sand wells is shown in Figure 8. TCE was detected in 20 of the C-Sand wells sampled in March 2010 at concentrations ranging from an estimated 1.1 μ g/l to 1,900 μ g/l. The highest concentration of TCE occurred in well MWC024, located in the southern portion of the former Building 2 area immediately west of the eastern building.

1,1-DCE and cis-1,2-DCE were the second most prevalent compounds detected, each found in 18 and 19 of the 21 C-Sand wells, respectively. 1,1-DCE was detected at concentrations ranging from an estimated 0.71 to 3,300 µg/l. The distribution of 1,1-DCE in the C-Sand is shown in Figure 9. The highest concentrations of 1,1-DCE occurred in Wells EWC001 and MWC023, located in the former Building 1/36 area. Concentrations of cis-1,2-DCE ranged from an estimated 0.4 to 1,500 µg/l, with the highest concentration also detected in Well EWC001.

As shown in Table 5, other VOCs with multiple detections include 1,1-DCA, 1,2-DCA, benzene, chloroform, *trans*-1,2-DCE, and vinyl chloride.

3.3.3 Gage Aquifer

Four Gage aquifer wells were sampled in March 2010 as part of the annual groundwater monitoring program. Samples from each well were analyzed for VOCs. The locations of the four Gage aquifer wells, MWG001 through MWG004, are shown in Figure 2.

Several VOCs, including TCE, 1,1-DCE, and *cis*-1,2-DCE, were detected in one or more of the four Gage aquifer wells sampled in March 2010. The highest concentration of TCE (73 µg/l) was detected in the sample from Well MWG003 and the highest concentration of 1,1-DCE (200 µg/l) was detected in Well MWG0001. The highest concentration of *cis*-1,2-DCE was detected in Well MWG002 at 570 µg/l.

A summary of the historical VOC data is provided in Appendix D.

3.4 RECOMMENDATION

No change in the current site-wide monitoring program is recommended at this time.

Boeing Former C-6 Facility Page 14
Los Angeles, California May 27, 2010

Respectfully submitted,

AVOCET ENVIRONMENTAL, INC.

Muhael a Gendina

Michael A. Rendina, P.G. Principal

Page 15 May 27, 2010

REFERENCES

- ASTM International, March 2002, ASTM Method D 6771: Standard Practice for Low-Flow Purging and Sampling for Wells and Devices Used for Ground Water Quality Investigations.
- Avocet Environmental, Inc., January 26, 2009, 2008 Semiannual Waste Discharge Requirements (WDR) Monitoring Report; Biorecirculation Pilot Test, Former Building 1/36 and C-Sand Bioremediation Amendment Injections, former Building 2; Compliance File CI-9310, Order No. R4-2007-0040; Boeing Former C-6 Facility, 19503 South Normandie Avenue, Los Angeles, California.
- Avocet Environmental, Inc., February 15, 2010, 2010 Groundwater Monitoring Work Plan, Boeing Former C-6 Facility, 19503 South Normandie Avenue, Los Angeles, California.
- California Regional Water Quality Control Board, Los Angeles Region (LARWQCB), March 4, 2010, Work Plan Approval, 2010 Groundwater Monitoring Schedule, Boeing Corporate Real Estate, Former C-6 Facility, 19503 South Normandie Avenue, Los Angeles (SCP No. 0410; Site ID No. 1846000), letter to Boeing Corporate Real Estate.
- CH2M Hill, Inc., June 2007, Data Management Plan, Revision 05. Environmental Data Management System (EDMS), The Boeing Company, Boeing Realty Corporation.
- Haley & Aldrich, Inc., December 8, 2005, Well Completion Report, Groundwater Monitoring Wells MWG001, MWG002, MWG003, MWG004, and MWC009, Boeing Realty Corporation, Former C-6 Facility, Los Angeles, California, prepared for Boeing Realty Corporation, Long Beach, California.
- Kennedy/Jenks Consultants, Inc., December 15, 2000, Groundwater Monitoring Work Plan 2000.
- Ogden Environmental and Energy Services Co., Inc., September 2000, Final Quality Assurance Project Plan (QAPP), The Boeing Company, C-I Facility Redevelopment Project, Phase II Soil Investigation, Long Beach, California, prepared for Boeing Realty Corporation, Long Beach, California.
- U.S. Environmental Protection Agency, October 1999, USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review. OSWER 9240.1-05A-P, PB99-963506, EPA540/R-99/008.

Table 1
Groundwater Monitoring Well Completion Details

Boeing Former C-6 Facility

Well I.D.	Water-Bearing Unit	Easting ^(1,3)	Northing ^(1,3,)	Reference Elevation (feet amsl) ⁽²⁾	Boring Total Depth (feet)	Screen Depth Interval (feet)	Depth to Top of Filter Pack (feet)	Casing Diameter (inches)	Casing Type	Slot Size (inches)	Drilled Date
B-Sand Monitor	ing Wells										
AW0055UB	Upper B-Sand	6,470,304	1,769,863	53:54	.92	69 - 89	65	-2	Sch 40 PVC	0.02	06/21/05
AW0064UB	Upper B-Sand	6,470,346	1,769,801	53.28	.92	68.5 - 88.5	66	.2	Sch-40.PVC	0.02	06/21/05
AW0065UB	Upper B-Sand	6,470,316	1,769,802	53:64	.92	68.5 - 88.5	.66	.2	Sch-40.PVC	0.02	06/16/05
AW0066UB	Upper B-Sand	6,470,286	1,769,802	53.98	.91	69.5 - 89.5	67	2	Sch-40.PVC	0.02	06/14/05
AW0067UB	Upper B-Sand	6,470,261	1,769,810	54.01	-91	70 - 90	.67	2	Sch 40 PVC	0.02	06/08/05
AW0074UB	Upper B-Sand	6,470,365	1,769,759	52.73	91	70 - 90	.67	2	Sch 40 PVC	0.02	06/09/05
AW0075UB	Upper B-Sand	6,470,332	1,769,740	53:23	-93.	69 - 89	66	2	Sch 40 PVC	0.02	06/08/05
AW0076UB	Upper B-Sand	6,470,302	1,769,740	53:69	.92	69 - 89	.66,	2	Sch 40 PVC	0.02	06/08/05
AW0077UB	B-Sand	6,470,254	1,769,763	53.96	.86	70.5 - 85.5	.69	2	Sch 40 PVC	0.02	08/19/04
BL-03	B-Sand	6,468,962	1,768,747	58:66	79	59 - 79	56.	2	Sch 40 PVC	.0.01	02/08/99
DAC-P1	B-Sand	6,468,953	1,769,774	55:13	.90	60 - 90	·55.	4	Sch 40 PVC	0.01	09/25/89
EWB001	B-Sand	6,470,381	1,769,604	49.14	.84.7	59.2 - 89.2	.56,	6	Sch.80 PVC	0.02	11/09/06
EWB002	B-Sand	6,470,279	1,769,773	53.74	-90	60 - 90	56	6	Sch 80 PVC	0.02	.06/13/07
MW0005	B-Sand	6,470,232	1,769,063	52:1.	.85	6585	63.	4	Sch 40 PVC	0.01	.08/08/03
MWB003.	B-Sand	6,470,193	1,769,474	56:95	.92	6590	63.	2	Sch 40 PVC	0.02	11/30/05
MWB006	B-Sand	6,470,251	1,770,051	53.9	.93.	65 - 90	63	2	Sch-40 PVC	0.02	12/01/05
MWB007	B-Sand	6,470,211	1,770,213	51.39.	.92	60 90	57	4	Sch-40 PVC	0.02	06/06/05
MWB012	B-Sand	6,470,035	1,769,019	52:43	.90.5	64.5 - 84.5	62	4	Sch-40 PVC	0.02	05/17/04
MWB013	B-Sand	6,469,592	1,769,396	.55.33	.86.5	65 - 85	62	4	Sch 40 PVC	0.02	05/17/04
MWB014	B-Sand	6,470,280	1,768,387	51.69	86.5	65 - 85	62	4	Sch 40 PVC	0.02	05/17/04
MWB019	B-Sand	6,469,970	1,768,093	55.18	.90.5	65 - 85	62	4	Sch 40 PVC	0.02	05/17/04
MWB020	B-Sand	6,470,396	1,770,863	51.07	120.5	59.5 89.5	56	4	Sch 40 PVC	0.02	06/06/05
MWB027	B-Sand	6,469,948	1,769,934	57.14	91.5	67.5 - 87.5	65	2	Sch 40 PVC	0.02	11/30/05
MWB028	B-Sand	6,470,106	1,769,475	56.84	93	65 - 90	.63.	2	Sch 40 PVC	0.02	12/01/05
TMW_04	B-Sand	6,470,254	1,769,116	51.39	.84	58 78	56	2	Sch 40 PVC	0.01	06/30/98
TMW_06.	B-Sand	6,470,299	1,768,718	51.72	.93	67 - 87	.66	2	Sch 40 PVC	0.01	07/01/98
TMW_07	B-Sand	6,470,318	1,769,483	53.96	.91	65 - 85	.63	2	Sch 40 PVC	0.01	06/29/98
TMW_08.	B-Sand	6,470,329	1,769,594	53.98	.90	61 - 81	59	2	Sch 40 PVC	0.01	06/29/98
TMW_10	B-Sand	6,470,723	1,768,951	49.92	.85	60.5 - 80.5	.58.	2	Sch 40 PVC	.0.01	01/28/99
TMW_11	B-Sand	6,470,721	1,768,204	49.85	83	58 - 78	.55,	2	Sch 40 PVC	.0.01	02/01/99
TMW_14	B-Sand	6,469,550	1,768,199	58.91	.90	65 - 85	,63.	2	Sch 40 PVC	0.01	02/03/99
TMW_15	B-Sand	6,469,555	1,768,950	57.65	.92	62 - 87	.60	2	Sch 40 PVC	0.01	02/04/99

Table 1
Groundwater Monitoring Well Completion Details
Boeing Former C-6 Facility

Well I.D.	Water-Bearing Unit	Easting ^(1,3)	Northing ^(1,3.)	Reference Elevation (feet amsl) ⁽²⁾	Boring Total Depth (feet)	Screen Depth Interval (feet)	Depth to Top of Filter Pack (feet)	Casing Diameter (inches)	Casing Type	Slot Size (inches)	Drilled Date
WCC_03S	.B-Sand	6,470,367	1,770,021	52.8	.92	69 - 89	,64,	4	Sch 40 PVC	0.01	10/26/87
WCC_04S	B-Sand	6,470,499	1,769,857	52:23.	.92	70.5 90.5.	,65,	4	Sch 40 PVC	0.01	10/27/87
WCC_05S	B-Sand	6,470,722	1,769,779	52.82	.91	61 - 91	64	4	Sch 40 PVC	0.01	11/24/87
WCC_06S;	B-Sand	6,470,336	1,769,734	52:52	91	.6090.	54.	4	Sch 40 PVC	0.01	09/22/89
WCC:_07S;	B-Sand	6,470,505	1,769,695	52.21	91	.6090.	54	4	Sch 40 PVC	0.01	06/08/89
WCC:_09S;	B-Sand	6,470,683	1,769,409	54.96	92	60 - 90	.55	4	Sch 40 PVC	0.01	09/21/89
WCC_12S	B-Sand	6,470,506	1,769,496	51.32	.92	60 90	55	4	Sch-40 PVC	0.01	09/17/90
XMW-09	B-Sand	6,470,407	1,767,930	53.16	-80	61 - 76		4	-	-	05/09/89
XMW-19	B-Sand	6,470,722	1,768,538	49.38	.80	62 - 77	-	4	-	-	03/30/90
C-Sand Monitoring	g Wells										
AW0073C	C-Sand	6,470,329	1,769,765	53:42	117	96 - 116	.93	2	Sch 40 PVC	0.02	06/09/05
CMW001	C-Sand	6,470,700	1,768,183	54.37	124	99 - 124	.97	4	Sch 40 PVC	0.01	08/15/03
CMW002	C-Sand	6,470,554	1,767,936	.52.81	124	99 - 124	.97	4	Sch 40 PVC	0.01	08/14/03
CMW026	C-Sand	6,470,279	1,768,603	51.53	117	92 - 117	.90	4	Sch 40 PVC	0.01	08/06/03
EWC001	C-Sand	6,470,359	1,769,706	52.59	125	97 - 122	.94	4	Sch 80 PVC	0.02	11/08/06
EWC002	C-Sand	6,470,267	1,768,368	51.76	125	96 - 121	.93.	4	Sch 80 PVC	0.02	10/20/06
IW.C001	C-Sand	6,470,121	1,768,453	53.05	125	95 - 115	.92	4	Sch 80 PVC	0.02	11/02/06
IWC002	C-Sand	6,470,239	1,768,669	51.56	125	.96 - 116	.93	4	Sch 80 PVC	0.02	10/31/06
MWC004.	C-Sand	6,470,486	1,769,491	51.86	118	.96 - 116	.93	4	Sch 40 PVC	0.02	06/07/05
MWC006	C-Sand	6,470,252	1,770,037	54.03	117.5	.95 - 115	.93	2	Sch 40 PVC	0.02	11/29/05
MWC007	C-Sand	6,470,172	1,770,172	51,57	119	.97117	.93:5	4	Sch 40 PVC	0.02	06/03/05
MWC009	C-Sand	6,470,658	1,769,365	53.99	125	101 - 121	.97.5	4	Sch 40 PVC	0.02	04/28/05
MWC011	C-Sand	6,470,263	1,769,749	54.03	117	.941,14	.92	2	Sch 40 PVC	.0.02	11/29/05
MWC015.	C-Sand	6,470,304	1,768,821	51.51	128	100 - 125	.99.	4	Sch 40 PVC	0.02	05/17/04
MWC016.	C-Sand	6,469,987	1,768,720	52.61	131.	102.5 - 127.5	101	4	Sch 40 PVC	0.02	05/17/04
MWC017	C-Sand	6,469,979	1,768,093	55.16	128	100 - 125	.99.	4	Sch 40 PVC	0.02	05/17/04
MWC021	C-Sand	6,470,705	1,768,939	54:53	126	97 - 122	.94:.5	4	Sch 40 PVC	0.02	05/17/04
MWC022	C-Sand	6,470,454	1,769,986	51.6	120	-97 - 117	-93:5	4	Sch 40 PVC	0.02	06/07/05
MWC023.	.C-Sand	6,470,428	1,769,802	51.43.	120	-97 - 117	.94	4	Sch 40 PVC	0.02	06/07/05
MWC024	C-Sand	6,470,266	1,768,409	51.64	125	96 - 121	.93.	4	Sch. 80 PVC	0.02	10/26/06

Table 1 Groundwater Monitoring Well Completion Details

Boeing Former C-6 Facility
Los Angeles, California

Well I.D.	Water-Bearing Unit	Easting ^(1,3)	Northing ^(1,3)	Reference Elevation (feet amsl) ⁽²⁾	Boring Total Depth (feet)	Screen Depth Interval (feet)	Depth to Top of Filter Pack (feet)	Casing Diameter (inches)	Casing Type	Slot Size (inches)	Drilled Date
Bioremediation Mo	onitoring Wells										
IRZB0081	B-Sand	6,470,037	1,768,714	52.92	-	64.5 - 89.5	63	0.75	Sch 40 PVC	0.01	09/04/03
IRZB0095	B-Sand	6,470,038	1,768,619	52.7	-	65 - 90	.63.:2	0.75	Sch 40 PVC	0.01	09/05/03
IRZMW001A	B-Sand	6,469,844	1,768,988	56.77	-	65 - 75	.63.	1.5	Sch 40 PVC	0.01	06/26/02
IRZMW001B	B-Sand	6,469,844	1,768,988	56.7	-	80 - 90	79.	1.5	Sch 40 PVC	0.01	06/26/02
IRZMW002A	B-Sand	6,469,840	1,768,989	56.66	-	68 - 78	.66,	1.5	Sch 40 PVC	0.01	06/03/03
IRZMW002B	B-Sand	6,469,840	1,768,989	56.76	-	83 - 93	.82	1.5	Sch 40 PVC	0.01	06/03/03
IRZMW003A	B-Sand	6,469,867	1,768,985	56.73	-	61 - 71	.60	1.5	Sch 40 PVC	0.01	06/02/03
IRZMW003B	B-Sand	6,469,867	1,768,985	56.78,	-	.8090	79	1.5	Sch 40 PVC	0.01	06/02/03
IRZMW004	B-Sand	6,470,051	1,768,610	53.06	-	65 - 90	.63.	4	Sch 40 PVC	0.01	09/04/03
IRZMW005	B-Sand	6,470,038	1,768,708	52.77	-	65 - 90	.63.	4	Sch 40 PVC	0.01	09/05/03
IRZCMW001	C-Sand	6,470,218	1,768,660	51.74	117	92 - 117	.90	4	Sch 40 PVC	0.01	08/06/03
IRZCMW002	C-Sand	6,470,417	1,768,410	55.6	121	96 - 121	.94	4	Sch 40 PVC	0.01	05/12/04
IRZCMW003.	C-Sand	6,470,298	1,768,593	51.69	117	92 - 117	.90	4	Sch 40 PVC	0.01	08/08/03
Gage Aquifer Mon	itoring Wells										
MWG001	Gage Aquifer	6,470,706	1,769,149	54.13	190	156 - 186	152	2	Sch.40 PVC	0.02	04/22/05
MWG002	Gage: Aquifer	6,470,705	1,768,452	54.78	195	162 - 192	158	. 2	Sch 40 PVC	0.02	04/28/05
MWG003	Gage Aquifer	6,470,056	1,768,915	53.079	185	154.5 - 184.5	150	.2	Sch 40 PVC	0.02	09/12/05
MWG004	Gage Aquifer	6,470,230	1,768,389	52.049	186	155 - 185	150	2	Sch 40 PVC	0.02	09/12/05

Notes:

- (1) California State Plane North American Datum of 83 (NAD 83), Zone 5, Feet
- (2) feet amsl = feet above mean sea level; elevations based on North American Vertical Datum of 1988 (NAVD 88)
- (3) Coordinates were slightly revised based on additional survey done in November 2006

[&]quot;-" = unknown

Table 2a

March 2010 Site-Wide Groundwater Monitoring Program

Boeing Former C-6 Facility

Los Angeles, California

	<u> </u>		<u></u>	<u> </u>				larch 2		*** <u>****</u>	<u>. 1. 1. 1. 1</u>	
,						Annu	al Even	t Analy	tical P	rogram		
AT III	Water-Bearing Unit	Total Select VOCs Concentration (490)	Sampling Order	Dedicated Pump?	Methane Wellhead Monitoring	Water Level Gauging	VOCS EPA 8260B	Field Parameters ⁽¹⁾	Ferrous Iron?	Dissolved Hydrocarbon Gases (DHGs) Methane, Ethane, Ethene RSK 175	WDR Analyses?	Comments
B-Sand Monitor	ing Wells											
BL-03	B-Sand	533	38			х	х	х				
DAC-P1	B-Sand	10,116	70			х	х	х				
EWB001	B-Sand	143	28		Ж.	,x	х	,x				
EWB002	B-Sand	82	23	Yes	Х.	. X	X	X:	Yes ⁽²⁾	. X		Analyses for continued bio evaluation
MW0005	.B-Sand	1,871	56.		х	.X	.X.	х				
MWB003.	.B-Sand	5,615	69		X.	. X	,X.	х		. X		Routine GWM.+ extent of CH4 in GW
MWB006	B-Sand	.17,000	75	Yes	х	х	х	.X	Yes ⁽²⁾	х		Analyses for continued bio evaluation
MWB007	B-Sand	2,858	64	Yes	х	х	х	х				Added methane wellhead monitoring
MWB012	B-Sand	917	45		х	,X	X	,X		X		Routine GWM + extent of CH4 in GW
MWB013	B-Sand	. 5	5	.Yes	.X	. X	Х	.X.				Added methane wellhead monitoring
MWB014	B-Sand	107	27		ж.	,X	х	,X				
MWB019.	B-Sand	350	35	Yes	Х.	. X	X	X:				Added methane wellhead monitoring
MWB020	B-Sand	.30	16.	Yes	х	.X	.X.	х		X		D CVD. C CCVA. CVV
MWB027	B-Sand	969	47	Yes	X.	. X	,X.	х		. X		Routine GWM + extent of CH4 in GW
MWB028	B-Sand B-Sand	916	44		Х	х	х	-X				Added methane wellhead monitoring
TMW_04		1,386	53		Х	х						Water level measurement only + methane WH monitoring
TMW_07	B-Sand B-Sand	.79 1,100	22 49	.Yes	X	X	X	,х				
TMW_08	B-Sand	1,161	52	.165	X X	·X	X X	X				
TMW_10	B-Sand	.10	11	Yes	X.	.x	X	X				
TMW_11	B-Sand	6	9	Yes	X.	.x	.x	X				
TMW_14	B-Sand	8	10	Yes	х.	. x	,x.	х				Added methane wellhead monitoring
TMW_15	B-Sand	21	14	Yes	х	х	х	.x		х		Routine GWM. + extent of CH4 in GW
WCC_03S	B-Sand	13,174	72	Yes	х	х	х	х		х		Routine GWM + extent of CH4 in GW
WCC_04S	B-Sand	0	1	Yes	х	X	х	,x		x		Routine GWM + extent of CH4 in GW
WCC_05S	B-Sand	2	4	Yes	.x	·X	х	.X.				
WCC_06S	B-Sand	418	36	Yes	ж.	,X	х	х	Yes ⁽²⁾			
WCC_07S	.B-Sand	182	31	Yes	Х.	. X	Х	X.		. X .		Routine GWM + extent of CH4 in GW
WCC_09S	B-Sand	51	21	Yes	х	.X	.x	х				
WCC_12S	.B-Sand	.27	15	Yes	X.	. X	,X.	х				
XMW-09	B-Sand	91	24		х	х	х	.X.				
XMW-19	B-Sand	.6	8		Х	Х	Х	х			V0000000000000000000000000000000000000	
C-Sand Monitor	ing Wells											
CMW001	C-Sand	0	1	Yes	х	х	х	х			postoj teliteli li	Added methane wellhead monitoring
CMW002.	C-Sand	1,100	49	Yes	х	, X	х	х	Yes ⁽²⁾	.х	Yes ⁽³⁾	Monitored under Building 2 WDR Program
CMW026	C-Sand	547	40	Yes	.x	, X	х	.x	Yes ⁽²⁾		Yes ⁽³⁾	Monitored under Building 2 WDR Program
EWC001	C-Sand	4,432	.67		х	,X	х	х				Added methane wellhead monitoring
EWC002	C-Sand											No sampling or gauging
IWC001	C-Sand	.2,016	57		х	,X	.X.	х				Added methane wellhead monitoring
IWC002	C-Sand	1,694	55									No sampling or gauging
MWC004	C-Sand	101	25	Yes	х	х	.X	х				
MWC006	C-Sand	15	12		х	х	х	х				Added methane wellhead monitoring
MWC007	C-Sand	.2	3	Yes	х	, X	X	х				Added methane wellhead monitoring
MWC009	C-Sand	164	30	Yes	.X	. X	х	x				Added methane wellhead monitoring
MWC011	C-Sand	105	26.		х	,X	х	х				Added methane wellhead monitoring
MWC015	C-Sand	.757	42		Х.	,X	Х	X.				Added methane wellhead monitoring
MWC016	C-Sand	1,620	54		х	,X	.X.	х				Added methane wellhead monitoring
MWC017	C-Sand	921	46.	Yes	X.	. X	,X.	х				Added methane wellhead monitoring
MWC021	C-Sand	16	13	Yes	х	х	х	.X				Added methane wellhead monitoring
MWC022	C-Sand	38	18	Yes	х	х	х	х				Added methane wellhead monitoring
	C-Sand	909	43	Yes	х	.X.	х	х	1	1	1	Added methane wellhead monitoring
MWC023 MWC024	C-Sand	.2,315	62	Yes	.x	, X	х	.x	Yes ⁽²⁾	,x	Yes ⁽³⁾	Monitored under Building 2 WDR Program

Table 2a

March 2010 Site-Wide Groundwater Monitoring Program

Boeing Former C-6 Facility Los Angeles, California

						Anni		larch 2 t Anal	010 vtical P	rogram		
Well ID:	Water-Bearing Unit	Total Select VOCs Concentration	Sampling Order	Dedicated Pump?	Methane Wellhead Monitoring		Water Level Gauging VOCs EPA 8260B		Ferrous Iron?	Dissolved Hydrocarbon Gases (DHGs) Methane, Ethane, Ethene RSK 175	WDR Analyses?	Comments
Sage Monitoring		₽.£	šš	Á	Σ.	A		Field Parameters ⁽¹⁾	<u> 4</u>	ā Z Z	<u> </u> *	<u> </u>
		22	17	37	Γ	T	Γ	<u> </u>	т	I	T	Γ
MWG001	Gage.	.33	17 37	Yes	<u> </u>	,X	х	,X	-		 	
MWG002 MWG003	Gage.	466 163	29	Yes		. X	,X	X.				
MWG003 MWG004	Gage.	44	29	Yes Yes		.X	.X	X				
	Gage rent Bioremediatio				l Wallei	X	х	Х		<u> </u>	1	
					•	T		ı		ı		Lunger u. c
AW0055UB AW0064UB	Upper B-Sand	.19,470	77	Yes	х	,X.	х	х	Yes ⁽²⁾	х	-	Added DHGs and iron for continued bio evaluation
AW0065UB	Upper B-Sand	2,450 -251	63 33	Yes Yes	х	х	х	х	Yes ⁽²⁾	х		Analyses for continued bio evaluation
AW0066UB	Upper B-Sand Upper B-Sand	5	6	Yes								No sampling or gauging No sampling or gauging
AW0067UB	Upper B-Sand	6	7	Yes					<u> </u>			No sampling or gauging No sampling or gauging
AW0074UB	Upper B-Sand	.10,540	71	Yes	х	х	х	х	Yes ⁽²⁾	x		Added DHGs and iron for continued bio evaluation
AW0075UB	Upper B-Sand	.2,259	60	Yes	x	X.	x	,x	Yes ⁽²⁾	x	<u> </u>	Analyses for continued bio evaluation
AW0076UB	Upper B-Sand	195	32	Yes		.^.	·A	.Δ	res	Α,		No sampling or gauging
AW0077UB	Upper B-Sand	-39	19	Yes	х	х	х	X.	Yes ⁽²⁾	х		Added DHGs and iron for continued bio evaluation
AW0073C	C-Sand	293	34	Yes	х	х	х	х	Yes ⁽²⁾	х		Analyses for continued bio evaluation
IRZB0081	B-Sand	2,287	61		х	х	х	х	Yes ⁽²⁾	х		Analyses for bio eval of past injections+CH4 WH Monitori
IRZB0095	B-Sand	.2,113	59		х	, х	х	х	Yes ⁽²⁾	,x		Analyses for bio eval of past injections+CH4 WH Monitori
IRZMW001A	B-Sand	15,690	74		х	. X	х	.x	Yes ⁽²⁾	.x		Analyses for bio eval of past injections+CH4 WH Monitori
IRZMW001B	B-Sand	535	39		х	,x	х	x	Yes ⁽²⁾	x		Analyses for bio eval of past injections+CH4 WH Monitori
IRZMW002A	.B-Sand	.15,302	73		X.	, X	·x	,x	Yes ⁽²⁾	x		Analyses for bio eval of past injections+CH4 WH Monitori
IRZMW002B	.B-Sand	582	41		х	X	.X	,X	Yes ⁽²⁾	X		Analyses for bio eval of past injections+CH4 WH Monitori
IRZMW003A	B-Sand	.17,853	76.		X.	. X	·X	х	Yes ⁽²⁾	х		Analyses for bio eval of past injections+CH4 WH Monitori
IRZMW003B	B-Sand	2,103	58		х	х	х	х	Yes ⁽²⁾	х		Analyses for bio eval of past injections+CH4 WH Monitori
IRZMW004	B-Sand	3,784	65		х	х	х	х	Yes ⁽²⁾	х		Analyses for bio eval of past injections+CH4 WH Monitori
IRZMW005	B-Sand	3,972	66		х	, X	X	х	Yes ⁽²⁾	.X		Analyses for bio eval of past injections+CH4 WH Monitori
IRZCMW001	C-Sand	1,027	48	Yes	х	, X	х	.x	Yes ⁽²⁾	.х	Yes ⁽³⁾	Monitored under Building 2 WDR Program
IRZCMW002	C-Sand	1,126	51	Yes	х	, X	х	,x	Yes ⁽²⁾	,x	Yes ⁽³⁾	Monitored under Building 2 WDR Program
IRZCMW003	.C-Sand	5,090	68	Yes	X	,X	X	X:	Yes ⁽²⁾	X	Yes ⁽³⁾	Monitored under Building 2 WDR Program
	Subtotals		le Program		66	72	71	71	25	32	-	
	. (4)	WD	R Program		6	6.	6	.6	-	.6	6	
)nality Control							00.000					
Duplicates (1 pe						ļ	x (4)		<u> </u>		L	
Rinsate Blanks (Trip Blanks (1 p						ļ	x (4.)					
							x(6)					

Notes:

 $VOCs = volatile\ organic\ compounds\ using\ EPA\ Method\ 8260B$

 $Field\ Parameters = pH, dissolved\ oxygen\ (DO), redox, furbidity, electrical conductivity, and temperature.$

- (1) As a quality assurance check on DO measurements, 10 percent of the samples will be analyzed in the field using a CHEMetrics, Inc test kit (K-7512 or K-7540).
- (2) Test for ferrous iron using the Hach DR890 Colorimeter not required by WDR after Year 1.
- (3) Analyze samples in accordance with the Building 2 WDR Program.
- (4) Quality control sample number based on number of wells and estimated number of sampling days.

Table 2b Additional Analyses - March 2010 Site-Wide Groundwater Monitoring Event

Boeing Former C-6 Facility
Los Angeles, California

				<u></u>		<u> </u>	<u></u>	· · · · · ·					er energy er				*				
						· · · · · · · · · · · · · · · ·			<u> </u>	Ma	ır ch 201	10 - Ado	ditional	Analy	tes					· · · · · · · · · · · · · · · · · · ·	
Well ID	Water-Bearing Unit	Total Select VOCs Concentration (μg/l)	Sampling Order	Dedicated Pump?	SVOCs (incl. 1,4-dioxane and NDMA).	CAM Title 22 Metals	Flashpoint	Cyamides (total)	Sulfides (dissolved)	Til.	Temperature	Pesticides/PCBs	Chemical Oxygen Demand (COD)	Total Suspended Solids	Hexavalent Chromium	pCBSA	Perchlorate	Boron	Anions (NO ₃ , NO ₂ , Cl, SO ₄) EPA 300.0	Total Dissolved Solids EPA 160.1	Comments
B-Sand Monitori	ng Wells																				
MW0005	B-Sand	1,871	34		·X	٠x	.X	X.	X.	X.	X.	·X	·X	٠x	.X	X-	X	X-	X.	Х	
MWB003	B-Sand	5,615	43		.X	,X	Х	X.	X.	Х	Х	X	·X	,X	X	Χ.	X.	Х	Х	X	
MWB013	B-Sand.	5.	-3	Yes	.X	·X									X						
-MWB014	.B-Sand	107	.18		·X	-X									X	X.	X.				
MWB019	B-Sand,	.350,	23	Yes											Х	X.					
MWB020	B-Sand	30.	12	Yes																	
.MWB027	B-Sand	969	30	Yes											X						
TMW_06	B-Sand	79	15		·X	·X									X	Χ·	X.	X-	X.	X	
TMW_08	B-Sand	1,161	32		.X	.X									X	X.	X.	X	X	.X	
TMW_10	B-Sand.	10	.9	Yes	.X	·X										X :					
$TMW_{-}11$.B-Sand	6	7	Yes												X.					
TMW_14	B-Sand	-8	.8	Yes											X	Χ.					
TMW_15	B-Sand	21	10	Yes	.X	.X									X						
WCC_03S	B-Sand	13,174	46	Yes	·X	·X	X	X·	X·	X.	X	·X	X	·X	X	X·	X.	X.	-X	·X	
WCC_09S	B-Sand	51	14	Yes	,X	,X									X	X.	X.	Х.	Х	.X	
XMW-09	B-Sand	91	17		,X	·X									X	X.	X				
.AW0074UB	Upper B-Sand.	10,540	45	Yes	.X	·X									X	X:	Χ.	X	X	·X	
IRZMW002A	B-Sand	15,302	47		·X	·X	.X	X·	X.	X.	X.	·X	·X	·X	X	Χ·	X.	X-	X.	·X	
IRZMW004	B-Sand	3,784	41		.X	,X	Х	X.	X.	Х	Х	,X	.X	,X	X	Χ.	X.	X	Х	Х	
				Subtotals	14	15	5	5	5	5.	-5.	-5	.5	5	16	15	11	9	9	.9	
C-Sand Monitor	ng Wells																				
.CMW001	C-Sand	0.	.1	Yes												X·					
CMW002	C-Sand	1,100	15	Yes	.X	,X									X	Χ.	X.				
EWC001	C-Sand	4,432	-21		.X	·X	X	X·	X.	·X	X	X	.X	·X	X	X·	X	X	Х	X	
.IWC001.	C-Sand	2,016	.19												X	X.					
MWC004	.C-Sand	101	.6	Yes	X	,X	X	X.	X,	X.	X	.X	,X	,X	X	X.	X.	X.	X	.X	

Table 2b Additional Analyses - March 2010 Site-Wide Groundwater Monitoring Event

Boeing Former C-6 Facility
Los Angeles, California

	March 2010 - Additional Analytes																				
										Ma	rch 201	0 - Adc	litional	Analy	tes						
Well ID	Water-Bearing Unit	Total Select VOCs Concentration (μg/l)	Sampling Order	Dedicated Pump?	SVOCs (incl. 1,4-dioxane and NDMA) ⁽¹⁾	CAM Title 22 Metals	Flashpoint	Cyanides (total)	Sulfides (dissolved)	H đ	Temperature	Pesticides/PCBs	CoD)	Total Suspended Solids	Hexavalent Chromium	pCBSA	Perchlorate	Boron	Anions (NO ₃ , NO ₂ , CI, SO ₄) EPA 300.0	Total Dissolved Solids EPA 160.1	Comments
.MWC009	C-Sand.	164	8	Yes	·X	·X	X	X·	X·	X.	·X	·X	X	·X	Х	X·	X.	X	·X	·X	
MWC015	C-Sand	757.	11		X	, X	X	X.	X.	X.	X	.X	X	,X	х	X.	X.	X.	Х	.X	
MWC016.	C-Sand	1,620	17		, X	. X									X	Χ.	X.	X	X	X	
MWC017	C-Sand.	.921	13	Yes											х	X-					
MWC021	C-Sand.	16	.4	Yes	$\cdot \mathbf{X}$	·X									X	X·	X.				
MWC023	C-Sand	.909	12	Yes	, X	,X	X	X.	X.	Х	Х	X	Х	,X	X	X.	X.	X	Х	X	
IRZCMW002	C-Sand	1,126	16	Yes	.X	. X									X	Χ.	X				
.IRZCMW003.	C-Sand	5,090.	22	Yes	·X	-X	, X.	X.	X·	X	X ⁻	·X	·X	-X	X	X.	X	X.	X	X	
				Subtotals	10	11	6.	6.	6.	6	6	6	.6	6	12	.13	.10	7.	.7	7	
Gage Monitorin	g Wells															780.000					
MWG001	Gage	33	1	Yes	, X	·X	Х	X.	Χ,	X	X	X.	X	٠x	Х	Χ.	X.	Х.	х	X	
MWG002	Gage	466	-4	Yes	·X	X	, X.	X.	X·	X·	X.	·X	X	X	Х	X.	X	X-	X.	X	
MWG003	Gage	163.	.3	Yes	X	,X									Х	X.	X				
MWG004	Gage	44	.2	Yes	. X	.X									X	Χ.	X				
				Subtotals	4	4	2	2	2	2	2	2	-2	-2	4	4	4	2	-2	2	
				Totals	28	30	13	13	13	13	.13.	13.	13	13	32	32	25	18	.18	18	

Notes

SVOCs = semivolatile organic compounds using EPA Method 8270C

(1) Individual SVOCs shall have a reporting limit (RL) of less than (<) 0.01 milligram per liter (mg/L or ppm)

RL for 1,4-dioxane - 3 ppb

RL for NDMA - as low as possible

RL for Perchlorate - 4 ppb

CAM = California Assessment Manual

NDMA = n-nitrosodimethylamine

PCBs = polychlorinated biphenyls

pCBSA = 4-chlorobenzene sulfonic acid

Table 3
Groundwater Elevations

		Reference	Depth to Water	Groundwater	Total Depth
Well I.D.	Date Measured	Elevation ⁽¹⁾	(feet) ⁽²⁾	Elevation ⁽¹⁾	of Casing
		(feet amsl)	(Ieet)	(feet amsl)	(feet) ⁽²⁾
AW0055UB	03/22/10	53:54	59.92	- 6.38	.92
AW0064UB	03/22/10	53.28	58.74	- 5.46	:92:
AW0073C	03/22/10	53:42	59.97	- 6.55	117
AW0074UB	03/22/10	52.73	59.20	- 6.47	······································
AW0075UB	03/22/10	53.23	59.71	- 6.48	93.
AW0077UB	-03/22/10	.53.96	60.50	- 6.54	-86
BL-03	03/22/10	58.66	65.75	- 7.09	79
CMW001	.03/22/10	54.37	62.18	- 7.81	124
CMW002	.03/22/10	52.81	60.72	- 7.91	124
CMW026	03/22/10	51.53	58.87	- 7.34	117.
DAC-P1	03/23/10	55.13	61.46	- 6.33	.90
EWB002	03/22/10	53.74	60.15	- 6.41	.90
EWC001	03/22/10	52:59	59.16	- 6.57	125
IRZB0081	03/22/10	52.92	60.09	- 7.17	89.5
RZB0095	03/22/10	52:70	59.94	- 7.24	.90
IRZCMW001	03/22/10	51.74	59.11	- 7.37	116.4
IRZCMW001	03/22/10	55.60	63.24	- 7.64	121.34
IRZCMW002	03/22/10	51.69	59.05	- 7.36	117.6
IRZMW001A	03/22/10	56.77	64.03	- 7.26	75
IRZMW001A	:03/22/10	56.70	64.02	- 7.32	·90
IRZMW001B	03/22/10	56.66	63.72	- 7.32 - 7.06	78.
IRZMW002A	03/22/10	56.76	63.81	- 7.00 - 7.05	.93.
IRZMW002B	03/22/10		63.78	- 7.05 - 7.05	71
IRZMW003A	03/22/10	·56:73: ·56:78	63.83	- 7.05 - 7.05	.90
IRZMW003B	.03/22/10	53.06	60.25	- 7.03 - 7.19	.90
***************************************	***************************************		59.91	- 7.19 - 7.14	:90
IRZMW005	.03/22/10	52:77	60.61	- 7.14	125
IWC001 MW0005	03/22/10 03/22/10	53:.05 52:.10	59.07	- 7.30 - 6.97	123 -85
MWB006			60.14	-6.24	· · · · · · · · · · · · · · · · · · ·
***************************************	03/22/10	53.90:	57.81	227333333333333	93
MWB007 MWB012	03/22/10	51.39		- 6.42	92
	03/22/10	52.43	59.47	- 7.04	90.5
MWB013	.03/22/10	55:33	61.84 58.82	- 6.51 - 7.13	86.5
MWB014	.03/22/10	51.69	**************************************	***************************************	86.5
MWB019	.03/22/10	55.18	62.62	- 7.44	90.5
MWB020	.03/22/10	51.07	56.99	- 5.92	120.5
MWB027	03/22/10	57.14	63.35	- 6.21	91.5
MWC004	03/22/10	51.86	58.63	- 6.77 ***********************************	118
MWC006	.03/22/10	54.03	60.36	- 6.33	117.5
MWC007	.03/22/10	51.57	57.99	- 6.42	119
MWC009	03/22/10	53:99.	61.00	- 7.01	125
MWC011	03/22/10	54.03	60.62	- 6.59	117
MWC015	03/22/10	51.51	59.67	- 8.16	128.
MWC016	03/22/10	52.61	60.28	- 7.67	131
MWC017	03/22/10	55.16	63.04	- 7.88	128
MWC021	03/22/10	54.53	61.66	- 7.13	126.
MWC022	03/22/10	51.60	58.02	- 6.42	120
MWC023	03/22/10	:51.43	58.12	- 6.69	120
MWC024	-03/22/10	51.64	59.16	- 7.52	125
MWG001	03/22/10	54.13	62.56	- 8.43	190

Table 3

Groundwater Elevations

Boeing Former C-6 Facility

Los Angeles, California

Well I.D.	Date Measured	Reference Elevation ⁽¹⁾ (feet amsl)	Depth to Water (feet) ⁽²⁾	Groundwater Elevation ⁽¹⁾ (feet amsl)	Total Depth of Casing (feet) ⁽²⁾
MWG002.	.03/22/10	54.78	63.62	- 8.84	195:
MWG003	03/22/10	53.08	61.44	- 8.36	185
MWG004	03/22/10	.52.05	60.62	- 8.57	186
TMW_04	03/22/10	:51.39	58.31	- 6.92	80
TMW_06	-03/22/10	51.72	58.77	- 7.05	.93
TMW_07	.03/22/10	53.96	60.60	- 6.64	.91
TMW_08	.03/22/10	-53:.98-	60.55	- 6.57	-81
TMW_10	.03/22/10	49.92	56.79	- 6.87	.85
TMW_11	.03/22/10	49.85	56.98	- 7.13	83
TMW_14	.03/22/10	:58:91	66.32	- 7.41	:90
TMW_15	-03/22/10	.57.65	64.48	6.83	92
WCC_03S	03/22/10	52.80	59.05	- 6.25	92
WCC_04S	.03/22/10	52.23	58.80	- 6.57	92
WCC_05S	03/22/10	52.82	59.33	- 6.51	91
WCC_06S	-03/22/10	52.52;	59.04	- 6.52	91
WCC_07S	03/22/10	52.21	58.78	- 6.57	91
WCC_09S	:03/22/10	54.96	61.64	- 6.68	.92
WCC_12S	03/22/10	51.32	58.01	- 6.69	92

Notes:

- (1) Elevations based on North American Vertical Datum of 1988 (NAVD 88)
- (2) Feet below top of casing

feet amsl = feet above mean sea level (negative value indicates feet below mean sea level)

Table 4 Summary of Field Parameters

Boeing Former C-6 Facility
Los Angeles, California

Well I.D.	Unit	Monitoring Date	рН	Temperature (°C)	Turbidity (NTU)	Electrical Conductivity (mS/cm)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)
AW0055UB	Upper B-Sand	03/25/10	6.61	21.67	5.65	3.16	0.37	-123.2
AW0064UB	Upper B-Sand	03/25/10	7.04	21.95	11.7	1.03	0.25:	-149
AW0073C	C-Sand	03/25/10	7.31	21.90	6.18	0:77	0:28	-158.4
AW0074UB	Upper B-Sand	03/25/10	6.57	21.90	7.4	2:33	0:32	-115.4
AW0075UB	Upper B-Sand	03/25/10	6.89	22.16	3.6	2.74	0.30:	-134:4
AW0077UB	B-Sand	03/25/10	6.85	21.50	8:6	2.9	0.44	-153.3
BL-03	B-Sand	03/22/10	.3.69	22.00	48	2.99	3.63	19.6
CMW001	C-Sand	03/26/10	7.47	21.90	.2	0.847	0.59	-29.8
CMW002	C-Sand	03/23/10	7.43	21.41	3.	1.041	0:60	56.3
CMW026;	C-Sand	03/23/10	6.96	21.36	4	1.641	0.72	-86.1
DAC-P1	B-Sand	03/22/10	6.42	22.00	6.03	1.88	3.18	17.2
EWB001.	:B-Sand	03/23/10	6.74	21.64	.23	3.441	5.03	219.4
EWB002	B-Sand	03/25/10	6.78	21.77	2.61	2.71	0.45	-102:4
EWC001	C-Sand	03/24/10	6.80	22.33	11.2	1.48	0.35	-149.7
IRZB0081	B-Sand	03/25/10	6.80	21.01	1,000	1.7	0.40	-143.6
IRZB0095	B-Sand	03/25/10	6.88	21.42	1,000	1.63	1.22	-993
IRZCMW001	C-Sand	03/23/10	6.81	.21.81	2.59	1.26	0.40	-100.3
IRZCMW002	C-Sand	03/23/10	6.33	21.02	3.55	1.9	058	-113.2
IRZCMW003	C-Sand	03/23/10	6.60	21.26	3.53	1.26	0:.55:	-98.1
IRZMW001A	B-Sand	03/24/10	7.13	21.81	11.1	2.54	0.32	-52.6
IRZMW001B	B-Sand	03/24/10	7.07	21.34	3.96	1.77	0.66	15.2
IRZMW002A	B-Sand	03/24/10	7.11	21.73	227	2.45	0:40	-45.6
IRZMW002B	B-Sand	03/24/10	7.12	21.48	7.18	1.69	0.54	-57
IRZMW003A	B-Sand	03/24/10	7.05	21.64	85.3	2.28	0:68.	-52.1
IRZMW003B	B-Sand	03/24/10	7.07	21.48	15	1.6	0:41.	-92.6
IRZMW004	B-Sand	03/23/10	6.70	22.05	3.27	2.09	0.74	-35.8
IRZMW005	B-Sand	03/23/10	6.78	22.47	7.22	1.81	0:35:	-80.4
IWC001	C-Sand	03/24/10	7.46	21.93	.54	1.364	2.41	159.8
MW0005	B-Sand	03/24/10	7.56	22.65	61.	1:152	5.27	141
MWB003	B-Sand	03/23/10	7.17	22:06:	497	2:071	3.24	141
MWB006	B-Sand	03/25/10	5.91	22.94	0.74	8.01	0:12	-119
MWB007	B-Sand	03/25/10	7.37	21.86	3.	2.006	3:12	104:9
MWB012	B-Sand	03/24/10	7.87	22.41	4	.1.749	4:66	.115.3
MWB013	B-Sand	03/26/10	6.90	21.52	2	1.736	5.40	66.7
MWB014	B-Sand	03/24/10	7.52	21.17	-5	1.319	3:80	202.8
MWB019	:B-Sand	03/26/10	6.63	22.45	0:52:	2.98	4.81	-45.3
MWB020	B-Sand	03/25/10	7.15	21.23	3.	1.883	3.31	209.2
MWB027	B-Sand	03/25/10	6.73	21.68	3.86	2.08	3.78	-9.2
MWB028	B-Sand	03/23/10	7.24	21.77	490	1.444	4.57	209.6
MWC004.	C-Sand	03/25/10	. 7.67	22:28	-3	0.883	0:58.	179.2
MWC006	C-Sand	03/22/10	7.39	23:12	355	0.844	1.09	31.7
MWC007	C-Sand	03/22/10	7.26	22.09	2.28	1.058	2.10	363
MWC009	C-Sand	03/26/10	7.14	21.35	0.64	0.84	0.45	-96.2
MWC011	C-Sand	03/22/10	6.91	22.17	156	1:585	1.09	-5.1
MWC015	C-Sand	03/24/10	7.21	20.50	8	0.896	1.35	9
MWC016	C-Sand	03/24/10	7.59	22:35	7	1.279	2:51.	131

Table 4 Summary of Field Parameters

Boeing Former C-6 Facility Los Angeles, California

Well L.D.	Ünit	Monitoring Date	pН	Temperature (°C)	Turbidity (NTU)	Electrical Conductivity (mS/cm)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)
MWC017	C-Sand	03/26/10	:6.97.	22.65	1.97	0:88;	0.44	-188.1
MWC021	C-Sand	03/26/10	7.73	22.45	2	0.958	0.52	-35.5
MWC022	C-Sand	03/25/10	7.84	.22.80	2	0.888	0.61	180.3
MWC023	C-Sand	03/25/10	7.38	22.56	3:	1.251	0:49	8:6
MWC024	C-Sand	03/23/10	:6.90	22.64	2.32	1.39	0:38:	-81
MWG001	Gage	03/26/10	7.99	22:30	3	0.676	0':43'	-54.9
MWG002	Gage	03/26/10	7.27	23.17	3.72	0.73	0.42	-215
MWG003	Gage	03/26/10	7.50	21.73	2.98	0.86	0:46	-136.9
MWG004	Gage	03/26/10	7.81	20.45	2.18	0.64	0:53:	-120:6
TMW_06	B-Sand	03/24/10	7.76	20.40	-81.	1.726	4:05	204.6
TMW_07	B-Sand	03/24/10	7.04	21.04	12:2	1.62	5.06	.123.8
TMW_08	B-Sand	03/23/10	7.20	.22:42	6	2:203	0.63	92.7
TMW_10	.B-Sand	03/26/10	7.22	22:42	8	2:417	2.17	103.9
TMW_11	B-Sand	03/26/10	6.70	21.91	4	1.858	3:73:	103.8
TMW_14	B-Sand	03/25/10	.6.72	21.70	5	2.997	5:30	216.6
TMW_15	B-Sand	03/25/10	7.19	20.58	:5:	1.615	4:72:	213.7
WCC_03S	B-Sand	03/25/10	:6.36	22.39	2.03	4:09:	0.16	-155
WCC_04S	B-Sand	03/24/10	6.70	23.05	1.98	2.28	2:29	72:3
WCC_05S	B-Sand	03/22/10	6.88	22:70	1.52	1.53	4:20	1.1
WCC_06S	B-Sand	03/25/10	7.00	.22.14	0.37	3.63	6:08 _:	-15.4
WCC_07S	B-Sand	03/25/10	7.42	22:64	3	2:497	4.38:	179.9
WCC_09S	B-Sand	03/25/10	7.37	21.28	4	2.003	4.85	.190:2
WCC_12S	B-Sand	03/25/10	7.35	20.41	6	1.66	5:25	214.1

Notes:

°C = degrees Celsius NTU = nephelometric turbidity unit mS/cm = millisiemen per centimeter mg/l = milligram per liter mV = millivolt

(Units are µg/l)
Boeing Former C-6 Facility
Los Angeles, California
Page 1 of 3

<u> </u>		<u> </u>											<u> </u>									<u> </u>	<u> </u>	<u></u>	<u> </u>	<u></u>	
Well ID	Cátegory	Sample Date	Sample Type	1,1,1,2. Tetrachloroetiane	1.1.1. Trichloroethane	1,1,2,2. Tetrachloroethane	1.1.2. Trichloroethane	1,1Dichloroethane	1.1.Dichloroethene	1,1.Dichloropropene	12.3 Trichlorobenzene	1,2,3-Trichloropropane	1.2.4-Trichlorobenzene	1,2,4-Trimethylbenzene	1.2.Dibromo-3-chloropropane	1,2. Dibromoethane (EDB)	1.2-Dichlorobenzene	1,2. Dichloroethane	1,2. Dichloropropane	1,3,5-Trimethylbenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	2.2. Mchloropropane	2. Chlorotoluene	2.Hexanone	4. Chlorotoluene	4-Methyl 2-pentanone
AW0073C	C-Sand	03/25/10	Primary	<1	1 ~:~	<1	2.4	45	81.	<1	<1 L	<1.	<1 C	<1	<2	<1	<1	7.9	<1	<1	<1	<1	<1	<1	<6	<1.	<5
CMW001	C-Sand	03/26/10	Primary	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<50	<25	<25	<12	<25	<25	<25.	<25	<25	<25	<150.	<25	<120
CMW002	C-Sand	03/23/10	Primary	<40	<40	.<40	<40	<40	<40	<40	<40	<40	<40 C	.<40	<80	.<40.	<40	<20	<40	<40	·<40·	<40	.<40	<40	<240	<40	<200
CMW026	C-Sand	03/23/10	Primary	<2.5 <10 C,L	<2.5	<2.5	<2.5 8.1 J	5.8 .86	1.1 J 3,300	<2.5	<2.5.	<2.5	<2:5:C	<2:5	<5.	<2.5	<2.5 <10	1.2	<2.5	<2.5	<2:5	<2.5	<2.5	<2:5.	<15	<2.5 <10	<12 <50
EWC001	C-Sand	03/24/10	Primary	<10 C,L	. 4.9 J <2.	<10 <2	6 6	9.4	380	<10 <2	<10 <2	<10 <2	<10 <2 C	<10 <2	<20 C	.<10 <2·	<10 <2	.10 7.8	<10 <2	<10 <2	·<10.	<10 <2	<10 .C,L <2	<10 <2	<60 <12	<10 <2	<10
IRZCMW001	C-Sand	03/23/10	Primary		<5	·<5		<5	<5.	<5·	<5	<5	-	<5	<10		<5	<2.5			<5·	<5	<5	<5	<30.	<5.	<25
IRZCMW002 IRZCMW003	C-Sand	**********************	Primary	<5	<5	.<5	<5·	*******************	26	<5·	<5 L	<5.	<5 C	<5	<10	<5·	<5	<2.5	<5 <5	<5			. \S	<5	<30	<5·	<25
IWC001	C-Sand	03/23/10	Primary	<5 <4	<4	. <3 <4	<4	<5 <4	14	<4	<3 L <4	<4·	<3 C	<4	<8	<4	<3 <4	<2	<4	<5 <4	<5 <4	<5 <4	<4	<4	<30 <24	<4	<20
MWC004	C-Sand C-Sand	03/24/10	Primary	<1·	<1	<1	1.4		160	<1.	<1	<1.	<1	<1	<2	<1	<1	1.7	<1	<1	<1.	<1.	<1	<1	<6·	<1.	<5
MWC004	C-Sand	03/22/10	Primary Primary	<1	<1	<1	<1.	0.47 J	100	<1. <1	<1	<1.	<1 C	<1 <1	<2	<1	<1	<0.5	<1	<1	<1	<1	.\1 <1	<1 ·	<6:	<1. <1.	<5
MWC007	C-Sand	03/22/10	Primary	**************************************	**************************************	<1 <1	<1.	<1	6.7	~1 <1	<1 <1	<1.	<1 C	·<1	<2	<1	<1 × 1	< 0.5	<1	<1 <1	<1	<1	<1 .<1	<1	<6.	<1. <1.	<5
MWC009	C-Sand C-Sand	03/26/10	Primary	<1	<1	<1	4.4	4.1	530	<1	<1	<1.	<1	<1	<2	<1	<1.	5.1	<1	<1	<1	<1	<1	<1	<6	<1	<5
MWC011	C-Sand	03/22/10	Primary	<1.	<1	<1	<1	4.5	12	<1	<1	<1	<1 .C	<1	<2	<1	<1	0.68	<1	<1	<1	<1	<1	<1	<6.	<1	<5
MWC015	C-Sand	03/24/10	Primary	<2.5	<2.5	<2.5	<2.5	<2.5	23	<2.5	<2.5	<2.5	<2.5	<2.5	<5	<2.5	<2.5	<1.2	<2.5	<2.5	<2.5	<2.5	<2:5	<2.5	<15	<2.5	<12
MWC016	C-Sand	03/24/10	Primary	<5	<5	·<5	<5·	<5	19	<5	<5	<5·	<5	<5	<10	<5.	<5	<2.5	<5	<5	<5·	<5	.<5	<5	<30.	<5·	<25
MWC016	C-Sand	03/24/10	Duplicate	<5	<5	<5	<5.	<5	19	<5	<5	<5.	<5	<5	<10	<5	<5	<2.5.	<5	<5	<5	<5	<5	<5	<30	<5.	<25
MWC017	C-Sand	03/26/10	Primary	<1	<1	<1	<1.	·<1	32	<1	<1	<1	<1	<1	<2	<1	<1	<0.5.	<1	<1	<1	<1	<1	<1	<6.	<1.	<5
MWC021	C-Sand	03/26/10	Primary	<1.	<1	<1	<1.	0.75 J	0.71 J	<1	<1	<1	<1	<1	<2	<1	<1	<0.5	<1	<1	<1.	<1	<1	<1	<6	<1.	<5
MWC022	C-Sand	03/25/10	Primary	<1.	<1	<1	<1.	·<1	54.	<1	<1 L	<1.	<1 C	<1	<2	<1	<1.	<0.5	<1	<1	<1	<1	<1	<1	<6	<1.	<5
MWC022	C-Sand	03/25/10	Duplicate	<1.	<1.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<1.	<1	49.	<1.	<1 L	<1.	<1 C	.<1	<2	<1	<1	<0.5	<1	<1	<1.	<1	<1	<1	<6	<1.	<5 .
MWC023	C-Sand	03/25/10	Primary	<5.	2.1 J	<5	3.5 J	50.	2,400	<5	<5 L	<5:	<5 .C	<5	<10	<5	<5.	4.3	<5	<5	<5.	<5.	·<5	<5	<30.	<5 _:	<25
MWC024	C-Sand	03/23/10	Primary	<5	<5	<5	<5.	3.6 J	72	<5	<5 L	<5.	<5 .C	.<5	<10	<5.	<5	3.2	<5	<5	<5∙	<5	<5	<5	<30	<5·	<25
MWC024	C-Sand	03/23/10	Duplicate	<5	<5	<5	<5 _:	3.8 J	78	<5	<5 L	<5	<5 C	<5	<10	<5	<5 _.	2.9	<5	<5	<5∙	<5	<5	<5	<30.	<5	<25

Notes:

Bold type indicates detectable concentration.

< = not detected at a concentration greater than the laboratory reporting limit indicated

C = Cal. verif. recovery greater than MCL for this analyte

 $\ddot{\mathbf{J}}$ = estimated concentration detected below the laboratory reporting limit

L = Laboratory Control Sample and/or Laboratory Control Sample Duplicate recovery was above the acceptance limits

M1 = MS and/or MSD were above acceptance limits due to matrix interference

M7 = The MS and/or MSD were above the acceptance limits.

MHA = Due to high levels of analyte in the sample, the MS/MSD calculation does not provide useful spike recoveryinformation.

(Units are µg/l)
Boeing Former C-6 Facility
Los Angeles, California
Page 2 of 3

<u></u>																								<u> </u>		<u> </u>
WellLD	Category	Sample Date	Sample Type	Acetone	Beirzeite	Bromobenzene	Bromochlocometiane	Bromodichloromethane	Bromoform	Bromomethane	Carbon disulfide	Carbon tetrachloride	Chlorobenzene	Chloroethane	Chloreform	Chloromethane	cis. 1,2.Dichloroethene.	cis 1,3 Dichloropropene	Dibromochloromethane	Dichlorodifluoromethane	Disopropyl ether	Ethyl fert Buryl Ether (ETBE)	Ethylbenzéné	Hexachlorobutadiene	Iodomethane	Isopropylbenzene
AW0073C	C-Sand	03/25/10	Primary	<10	2	<1	<1	<1.	<1	<1	<1	<0.5	<1	<2	<1	<2	69	<0.5	<1	<1.	1.6 J	<2	0.42 Ј	<1	<2	<1
CMW001	C-Sand	03/26/10	Primary	<250	15	<25	<25	<25	<25	<25	<25	<12.	6,600	<50	<25	<50	<25	<12	<25:	<25	<50	<50	<25	<25	<50	<25
CMW002	C-Sand	03/23/10	Primary	<400	92	<40	<40	<40	<40	.<40	<40	<20	10,000	<80	.<40	<80	<40	<20	<40	<40	<80	<80	<40	.<40	.<80	<40
CMW026:	C-Sand	03/23/10	Primary	<25	<1.2	<2.5	<2.5.	<2.5	<2.5	<2:5	<2.5.	<1.2	<2.5	<5	<2:5	<5	2.8	<1.2	<2.5	<2.5	0.78 J	<5	<2.5	<2:5	<5	<2.5
EWC001	C-Sand	.03/24/10.	Primary	<100	18.	<10	<10	<10	<10.	<10	<10	<5	<10.	<20	4.1 J	<20	1,500	.<5	<10	<10	4.2 J	<20 C,L	<10	<10	<20	<10
IRZCMW001	C-Sand	03/23/10	Primary	<20	<1	<2	<2	<2	<2	<2	<2	<1	<2	<4	4.5	<4	23	<1	<2	<2	1 J	<4	<2	<2	<4	<2
IRZCMW002	.C-Sand	.03/23/10	Primary	<50	<2.5	<5	<5	<5	·<5·	<5	<5	<2.5	<5	<10	<5	<10	4.4 J	<2.5	<5	<5.	<10	<10	.<5	<5	<10	<5.
IRZCMW003	C-Sand	03/23/10	Primary	<50	<2.5	<5	<5	<5	<5	<5	<5	<2.5	<5	<10	1.9 J	<10	830	<2.5	<5	<5	<10	<10	<5	<5	<10	<5
IWC001	C-Sand	.03/24/10	Primary	<40	<2	<4	<4	<4	<4	<4	<4	<2.	<4	<8	400	<8	.47	.<2	<4	<4	<8	<8	<4	<4	<8	<4
MWC004	C-Sand	.03/25/10	Primary	<10	0.56	<1	<1	<1.	<1	<1	<1	<0.5	<1	.<2	0.51 J	<2	7.6	<0.5	<1.	<1.	<2	<2	<1	<1	<2	<1.
MWC006	C-Sand	.03/22/10	Primary	<10	<0.5	<1	<1	<1.	<1	<1	<1	<0.5	<1	<2	<1	<2	2.2	<0.5	<1.	<1.	<2	<2 	<1	<1	<2	<1.
MWC007	C-Sand	03/22/10	Primary	<10	<0.5	<1	<1	<1	<1	<1	<1	<0.5	<1	<2	<1	<2	0.4 .J	<0.5	<1	<1	<2	<2	<1	<1	-<2	<1.
MWC009	C-Sand	03/26/10	Primary	<10	1.2	<1	<1	<1	<1	<1 	<1	<0.5	<1	<2	1.5	<2	.17	<0.5	<1	<1	0.42 J	<2	<1 	<1	<2	<1.
MWC011	C-Sand	03/22/10	Primary	<10	-1.2	·<1	<1.	<1	. <1 -2 5	<1	<1.	<0.5	<1	7.4	<1	.<2 £	:14	.<0.5	<1	<1	0.38 J	<2	.<1	<1	·<2	<1
MWC015	C-Sand	03/24/10	Primary	<25	<1.2	<2:5	<2.5	<2.5	<2.5	<2.5	<2.5	<1.2	<2.5	<5	1.7 J	<5	2.6	<1.2 <2.5	<2.5	<2:5	<5	<5	<2:5	<2:5	<5	<2:5
MWC016	C-Sand	03/24/10	Primary	<50 -50	<2.5 <2:5	.<5	<5 <5	<5·	·<5	.<5	<5 <5	<2.5 <2.5	<5	<10 <10	8.5 8.6	<10 <10	40	<2.5 <2.5	<5	<5· <5.	<10 <10	<10 <10	্র ব্য	·<5	<10 <10	<5· <5.
MWC016	C-Sand	03/24/10	Duplicate	<50 <10	<0.5	<5 <1	<3 <1	<1	<5 <1	<5 <1	<1 <1	<0.5	<5	<10 <2	0.76 J	<10 <2	340	<2.3. <0.5	<5. <1	<1	<10 <2	<10 <2	<1	<5 <1	<10 <2	<3. <1.
MWC017	C-Sand C-Sand	03/26/10	Primary	<10	<0.5	<1 <1	<1 <1	<1	<1	<1 <1	<1 <1	<0.5	1.1 <1	<2	0.76 J 0.38 J	<2	4.5	<0.5	<1	<1 <1	<2	<2	<1 <1	<1 <1	<2 <2	<1. <1.
MWC021 MWC022	C-Sand C-Sand	.03/25/10	Primary	<10	<0.5	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<0.5	<1 <1	<2	(1)	<2	2.6	<0.5	<1	<1 <1	<2	<2	<1 <1	<1 .<1	<2	<1. <1.
MWC022.	C-Sand C-Sand	03/25/10	Primary Duplicate	<10	<0.5	<1 <1	<1 <1	<1. <1.	<1 <1	<1 <1	<1 <1	<0.5	<1	<2	<1 <1	×2	2.5	<0.5·	<1. <1.	<1. <1.	<2	<2	<1 <1		~2	<1. <1.
MWC022.	C-Sand C-Sand	03/25/10		<50	18	<5	<5	<5.	<5·	<5	<5	<2.5	<5	<10	3 J	<10	720	<2.5	<5	<u> </u>	3.8 J	<10	-<5	<5	<10	<5.
MWC023	C-Sand C-Sand	.03/23/10	Primary	<50	<2.5	.<5	<5	<5.	<5.	.<5	<5	<2.5	<5.	<10	. 18	<10 <10	24	<2.5	<5·	<u> </u>	<10	<10	<5	<5	<10	<5.
	***************************************	-	Primary	<50	<2.5 <2:5	.<5	<5	<5.	<5:	.<5	<5 <5	<2.5	<5.	<10	17	<10 <10	25	<2.5·	<22.	<u>5</u>	<10	<10	<5	<5	<10	<5:
MWC024	C-Sand	1.03/23/10	Duplicate	7	\$2.3	L		L 2	/ ₂	ζ.)	T	52.3	1	L ~10		I	L 23	\\\\\\	K.).	~	<10	L <10	43	ζ.)	<10	ζ.)

Notes:

Bold type indicates detectable concentration.

< = not detected at a concentration greater than the laboratory reporting limit indicated

C = Cal. verif. recovery greater than MCL for this analyte

 ${f J}$ = estimated concentration detected below the laboratory reporting limit

L = Laboratory Control Sample and/or Laboratory Control Sample Duplicate recovery was above the acceptance limits

M1 = MS and/or MSD were above acceptance limits due to matrix interference

M7 = The MS and/or MSD were above the acceptance limits.

MHA = Due to high levels of analyte in the sample, the MS/MSD calculation does not provide useful spike recoveryinformation.

(Units are μg/l) Boeing Former C-6 Facility Los Angeles, California Page 3 of 3

<u> </u>				· · · · · · · · · · · · · · · · · · ·								· · · · · · · · · · · · · · · · · · ·													<u> </u>	<u> </u>
WellTD	Category	Sample Date	Sample Туре	m.p.Xylenes	Methyl ethyl ketone	Methyl tert-buryl ether	Methylene chloride	n-Butylbenzene	n-Propylbenzene	o-Xylene.	p-fsopropy/toluene	sec.Butylbenzene	Styrene	Tert-amyl methyl ether	tert.Butanol (TBA)	tert-Butylbenzene	Tetrachloroethene	Tetrahydrofuran	Toluënë	trans.1.2.D/chloroethene	trans 1,3-Dichloropropene	Trichloroethene	Trichlorofluoromethane	Vinyl acetate	Vinyi chloride	Xylenes, Total
AW0073C	C-Sand	03/25/10	Primary	2.9	<5	<1	<1	<1	<1.	1.2	<1	<1	<1.	<2.	<25	<1	<1	<10	24	9.6	<0.5	6.1	<2	<6 L	240	4.1
CMW001	C-Sand	03/26/10	Primary	<25	<120	<25	<25	<25	<25	<12.	<25	<25	<25	<50	<620	<25	<25	<250	<25	<25	<12	<25	<50	<150 L	<12.	<25
CMW002	C-Sand.	03/23/10	Primary	<40	<200	<40	.<40	<40	<40	<20	.<40	<40	<40	·<80·	<1,000	<40	<40	<400	<40	<40	<20	230	<80	<240 L	<20	.<40
CMW026	C-Sand	03/23/10	Primary	<2:5.	<12	<2.5	<2:5	<2.5.	<2.5	<1.2	<2:5	<2.5.	<2.5	<5	<62	<2.5	<2.5	<25	<2.5	4.4	<1.2	1.1 J	<5	<15 L	1,000	<2:5
EWC001	C-Sand	03/24/10	Primary	<10	<50	<10.	<10	<10	<10	·<5.	<10	<10	<10	<20. C,L	<250	<10	<10	<100	.380.	93	<5 C	200	<20	<60 L	1,300	.<10
IRZCMW001	C-Sand	03/23/10	Primary	<2	<10	<2	<2	<2	<2	<1	<2	<2	<2	<4	<50	<2	<2	<20	<2	2.9	<1	.710	<4	<12 L	2.7	<2
IRZCMW002	C-Sand	03/23/10	Primary	<5	<25	<5	.<5	<5	<5	·<2.5	<5	<5	< 5	<10	<120	<5	<5.	<50	· < 5 ·	.13	<2.5	1.6 J	<10	<30 L	2,200	· <5·
IRZCMW003	C-Sand	03/23/10	Primary	<5	<25	<5	<5	<5	<5	. <2.5	<5	<5	<5	<10	<120	<5	<5	<50	<5.	-24	<2.5	.1,400	<10	<30 L	2,100	<5.
IWC001	C-Sand	03/24/10	Primary	<4	<20	<4	<4	<4	<4	·<2·	<4	<4	<4	<8.	<100	<4	<4	<40	<4	2.2 J	<2	1,300	<8	<24 L	<2.	<4
MWC004	C-Sand	03/25/10	Primary	<1	<5	<1	<1	<1	<1.	< 0.5	<1	<1	<1.	<2-	<25	<1.	<1.	<10	<1	3.2	< 0.5	.80	<2	<6 L	<0.5	<1
MWC006	C-Sand	03/22/10	Primary	<1	<5	<1	<1	<1	<1.	< 0.5	<1	<1	<1.	<2.	<25	<1.	<1.	<10	<1	<1	<0.5	2.2	<2	<6 L	3.	<1
MWC007	C-Sand	03/22/10	Primary	<1	<5	<1	<1	<1	<1.	<0.5	<1	<1	<1.	<2.	<25	<1	<1	<10	<1	<1	<0.5	1.2	<2	<6 L	<0.5	<1
MWC009	C-Sand	03/26/10	Primary	<1	<5	<1	<1	<1	<1	<0.5	<1	<1	<1	<2:	<25	<1.	0.79 J	<10	<1	9.6	<0.5	180	<2	<6 L	<0.5	<1
MWC011	C-Sand.	03/22/10	Primary	<1	<5	<1	<1	<1	<1	. <0.5	<1	<1	<1	<2.	<25	<1	<1	<10	4.8	5.1	<0.5	21	.<2	<6 L,M7	21	.<1
MWC015	C-Sand	03/24/10	Primary	<2.5	<12	<2.5	<2:5	<2.5	<2.5	<1.2	<2:5	<2.5	<2.5	<5	<62	<2:5	<2.5	<25	<2.5	<2.5	<1.2	.950	<5	<15 L	<1.2	<2.5
MWC016	C-Sand	03/24/10	Primary	<5	<25	<5	.<5	<5	<5	-<2.5	<5	<5	<5	<10	<120	<5	<5	<50	-<5	<5	<2.5	1,800	<10	<30 L	<2.5	·<5
MWC016	C-Sand	03/24/10	Duplicate	<5.	<25	<5	<5	<5	<5	<2.5	<5	<5	<5	<10	<120	<5.	<5.	<50	<5	<5	<2.5	1,800	<10	<30 L	<2.5	<5
MWC017	C-Sand	03/26/10	Primary	<1	<5	<1	<1	<1	<1	<0.5	<1	<1	<1	<2.	<25	<1.	0.56 J	<10	<1	6.8	<0.5	.2.7	.<2	<6 L	. 220	<1
MWC021	C-Sand	03/26/10	Primary	<1.	<5	<1	<1	<1	<1	<0.5	<1	<1	<1	<2	<25	<1.	<1	<10	<1	<1	<0.5	12	0.5 J	<6 L	<0.5	<1
MWC022	C-Sand	03/25/10.	Primary	<1.	<5	<1	<1	<1.	<1	<0.5	<1	<1.	<1	<2.	<25	<1.	<1.	<10	<1	0.63 J	<0.5.	35	<2	<6 L	< 0.5	<1
MWC022	C-Sand	03/25/10	Duplicate	<1	<5	<1	<1	<1	<1.	<0:5	<1	<1	<1.	<2	<25	<1	<1.	<10	<1	0.58 J	<0.5	34	<2	<6 L	<0.5	<1
MWC023	C-Sand	03/25/10	Primary	3.5 J	<25	<5	.<5	<5	<5	2.8	<5	<5	<5	<10	<120	<5	<5.	<50	<5.	-57	<2.5	450	<10	<30 L	9.4	6.2
MWC024	C-Sand	03/23/10	Primary	<5	<25	<5.	<5	<5	<5.	<2.5	.<5	<5	<5	<10	<120	<5	<5·	<50	<5.	<5	<2.5	1,900	<10	<30 L	<2.5	<5.
MWC024	C-Sand	03/23/10	Duplicate	<5	<25	<5	<5	<5	<5	<2.5	<5	<5	<5	<10	<120	<5	<5	<50	<5	<5	<2.5	1,900	<10	<30 L	<2.5	<5

Bold type indicates detectable concentration.

< = not detected at a concentration greater than the laboratory reporting limit indicated

C = Cal. verif. recovery greater than MCL for this analyte

 ${f J}={f e}$ stimated concentration detected below the laboratory reporting limit

 $L=Laboratory\ Control\ Sample\ and/or\ Laboratory\ Control\ Sample\ Duplicate\ recovery\ was\ above\ the\ acceptance\ limits.$

M1 = MS and/or MSD were above acceptance limits due to matrix interference

M7 = The MS and/or MSD were above the acceptance limits.

MHA = Due to high levels of analyte in the sample, the MS/MSD calculation does not provide useful spike recoveryinformation.

Table 6 **Data Precision for Sample Duplicates**

Boeing Former C-6 Facility Los Angeles, California

Well	Date Collected	Analysis	Compound	Original Sample ⁽¹⁾ (µg/l)	Duplicate Sample ⁽¹⁾ (µg/l)	Relative Percentage Difference ⁽²⁾
MWC016	3/24/2010	EPA Method	1,1-Dichloroethene	19	.19.	0
		8260B	Chloroform	8.5	8.6	.1.
			cis-1,2-Dichloroethene	40	40	0
			Trichloroethene	1,800	1,800	0
MWC022	03/25/10.	EPA Method	1,1-Dichloroethene	54	49	-10
		8260B	cis-1,2-Dichloroethene	2.6	2.5	4
			trans-1,2-Dichloroethene	0.63	0.58	8
			Trichloroethene	-35	34	3.
MWC024	03/23/10.	EPA Method	1,1-Dichloroethane	3:6	3.8	5
		8260B	1,1-Dichloroethene	72	78.	8.
			1,2-Dichloroethane	3.2	2.9	10
			Chloroform	18	.17.	6
			cis-1,2-Dichloroethene	24	:25	4
			Trichloroethene	1,900	1,900	0.
WCC_06S.	.03/25/10	EPA Method	1,1-Dichloroethane	4	4.2	5.
		8260B	1,1-Dichloroethene	820	990	19
			Chloroform	1.6	1.9	17
			cis-1,2-Dichloroethene	9.3	.10	. 7-
			Tetrachloroethene	4.7	4.8	2:
			trans-1,2-Dichloroethene	4.5	5.1	13:
			Trichloroethene	640	780	. 20

Notes:

- (1) Primary and duplicate samples analyzed by TestAmerica Laboratories, Inc. using EPA Method 8260B.
- (2) Relative percentage difference calculated as:

$$RPD = \frac{\left|V_1 - V_2\right|}{\left(V_1 + V_2\right)/2} \times 100$$
 where V_1 = original sample result.

 \overline{V}_2 = duplicate sample result

(Units are µg/l)
Boeing Former C-6 Facility
Los Angeles, CA
Page 1 of 4

																				, [.·
				e e	***************************************	e			-					*				:		, []
			************	uze	sue	azi	ane	sue.	5	.	75	0		.	ai	alene		j	*	
			***************************************	ope	ž	ydr	Ž	zua	qdo	oph	lomar	ethylphenol	nol	nem	nen	tha	-0	tha .		
		7.4	- e	Ď	96	nylhy	robe	-Dichloroben	—	<u> </u>	-Dichloroph	ylp	phe	otolı	ģ	aphth	5	dq.	miline	loma
	· · · · · · · · · · · · · · · · · · ·	Date	Туре	ich	Ilor	hen	nlor	ılor	Trichlo	[-	Ilor	eth	itro	tt.	itro	ons	roph	, j	THE THE	
i O'I	gor	ple	ple		2-Dichlo	Zit.	3-Dichlo)icl		[<u>;</u>	-Dim)imi	4-Dinitr)iii	Chlor	Chlor	ethy	troa	troph
Vell	ate	ample	Sample	4	7	,2-Diphe	<u>F</u> ,	4,	5,4,5	9,4	4	4	4	4	.,6-1	ָ [֡]	5	Ž	2-Nitr	Ż
AW0074UB	UD C1	03/25/10		<19 RL3	<9.4 RL3	<19 RL3	<9.4 RL3	<9.4 RL3	<38 RL3	<19 RL3	<38 RL3	<38 RL3	<94 RL3	<94 RL3	<94 RL3	<9.4 RL3	<19 RL3	<19 RL3	<94 RL3	<38 RL3
CMW002	Upper B-Sand C-Sand	03/23/10	Primary Primary	<19 RL3 <4.8 RL3	1.2 J.RL3	<19 RL3	<9.4 RL3	7.3 RL3	<9.5 RL3	<19 RL3 <4.8 RL3	<9.5 RL3	<9.5 RL3	<94 RL3	<94 RL3 <24 RL3	<94 RL3	<2.4 RL3	<19 RL3	<4.8 C-2a.RL3	<94 RL3	<9.5 RL3
EWC001	C-Sand	03/23/10	Primary	0.094 J	<0.47	<0.94	0.13 J	<0.47	<1.9	<0.94	<1.9	<1.9	<4.7	<4.7	<4.7	<0.47	<0.94	<0.94	<4.7	<1.9
IRZCMW002	C-Sand	03/23/10.	Primary	< 0.94	<0.47	<0.94	<0.47	<0.47	<1.9	<0.94	<1.9	<1.9	<4.7	<4.7	<4.7	<0.47	<0.94	<0.94 C-2a	<4.7.	<1.9
IRZCMW003	C-Sand	03/23/10	Primary	<0.94	< 0.47	<0.94	<0.47	<0.47	<1.9	<0.94	<1.9	<1.9	< 4.7	<4.7	<4.7	<0.47	<0.94	<0.94 C-2a	<4.7	<1.9
IRZMW002A	.B-Sand	03/24/10	Primary	<0.94	<0.47	<0.94	<0.47.	<0.47	<1.9	<0.94	<1.9	<1.9	<4.7	.<4:7	<4.7	<0.47	<0.94	<0.94	<4:7	<1.9
IRZMW004	B-Sand	03/23/10	Primary	<0.94	<0.47	<0.94	<0.47.	<0.47	<1.9	<0.94	<1.9	<1.9	<4.7	.<4.7	<4.7	<0.47	<0.94	<0.94 C-2a	<4.7	<1.9
MW0005	B-Sand	03/24/10:	Primary	<0.94	<0.47	<0.94	<0.47	<0.47	<1.9	<0.94	<1.9	<1.9	<4.7	<4.7	<4.7	<0.47	<0.94	<0.94	<4.7	<1.9
MWB003	B-Sand	03/23/10:	Primary.	<0.96	<0.48	<0.96	<0.48	<0.48	<1.9	<0.96	<1.9	<1.9	<4.8	<4.8	<4.8	<0:48	<0.96	<0.96 C-2a	<4.8	<1.9
MWB013	B-Sand	03/26/10	Primary	<0.94	<0.47	<0.94	<0.47	< 0.47	<1.9	<0.94	<1.9	<1.9	<4.7	<4.7	<4:7	<0.47	<0:94	<0.94	<4.7	<1.9
MWB014	B-Sand	03/24/10.	Primary	<0.94	<0.47	<0.94	<0.47	<0.47	<1.9	<0.94	<1.9	<1.9	<4.7	<4.7	<4.7	<0.47	<0.94	<0.94	<4.7	<1.9
MWC004	.C-Sand	03/25/10	Primary	<0.96	<0.48	<0.96	<0.48	<0.48	<1.9	<0.96	<1.9	<19	<4.8	<4:8	<4.8	<0.48	<0.96	<0.96	<4:8	<1.9
MWC009	C-Sand	03/26/10	Primary	<0.96	<0.48	<0.96	<0.48	<0.48	<1.9	<0.96	<1.9	<1:9	<4.8	<4:8	<4.8	<0.48	< 0.96	<0.96:	<4.8	<1.9
MWC015	C-Sand	03/24/10	Primary	< 0.94	<0.47	<0.94	<0.47.	< 0.47	< 1.9	<0.94	<1.9.	<1:9	<4.7	<4:7	<4.7	< 0.47	< 0.94	<0.94	<4.7	< 1.9
MWC016	.C-Sand	03/24/10	Primary	<0.94	<0.47	<0.94	<0.47	<0.47	<1.9	<0.94	<1.9	<1.9	<4.7	<4.7	<4.7	<0.47	<0.94	<0.94	<4.7	<1.9
MWC021	C-Sand	03/26/10	Primary	<0.94	<0.47	<0.94	<0.47	< 0.47	<1.9	<0.94	<1.9	<1.9	<4.7	<4.7	<4.7	<0.47	<0.94	<0.94	<4.7	<1.9
MWC023	C-Sand.	03/25/10	Primary	<0.94	<0.47	<0.94	< 0.47	<0.47	<1.9	<0.94	<1.9.	<1.9	<4.7	.<4.7	<4.7	<0.47	<0.94	< 0.94	<4.7	<1.9
MWG001	Gage	03/26/10	Primary	<0.96	<0.48	<0.96	<0.48	<0.48	<1.9	<0.96	<1.9	<1.9	<4.8	<4.8	<4.8	<0.48	<0.96	<0.96	<4.8	<1.9
MWG002	Gage	03/26/10	Primary	<0.95	<0.48	<0.95	<0.48	<0.48	<1.9	<0.95	<1.9	<1.9	<4.8	<4.8	<4.8	<0.48	<0.95	<0.95	<4.8	<1.9
MWG003	Gage	03/26/10:	Primary	<0.96	<0.48	<0.96	<0.48	< 0.48	<1.9	<0.96	<1.9.	.<1.9	<4.8 ************************************	<4.8	<4.8	<0.48	<0.96	<0:96	<4.8	<1.9
MWG004	Gage	03/26/10	Primary	<0.94	<0.47	<0.94	<0.47	<0.47	<1.9	<0.94	<1.9	<1.9	<4.7.	<4.7	<4:7	<0.47	<0.94	<0.94	<4.7	<1.9
TMW_06	B-Sand	03/24/10	Primary	<0.94	<0.47	<0.94	<0.47	<0.47	<1.9	<0.94	<1.9	<1.9	<4.7	<4.7	<4.7	<0.47	<0.94	<0.94.	<4.7	<1.9
TMW_08	B-Sand.	03/23/10.	Primary	<0.97	<0.49	<0.97	<0.49	< 0.49	< 1.9	<0.97	<1.9	<1.9	<4.9	<4.9	<4.9	<0.49	<0.97	<0.97 C-2a	<4.9	<1.9
TMW10.	B-Sand	03/26/10	Primary	<0.96	<0.48	<0.96	<0.48	<0.48	<1.9	<0.96	<1.9	<1:9	<4.8	<4.8	<4.8	<0.48	<0.96	<0.96	<4.8	<1.9
TMW_15	B-Sand	03/25/10	Primary	<0.94	<0.47	<0.94	<0.47.	<0.47	<1.9	<0.94	<1.9	<1.9	<4.7	<4.7	<4.7	<0.47	<0.94	<0.94	<4.7	<1.9
WCC_03S	B-Sand	03/25/10	Primary	0.13 J	< 0.47	< 0.94	0.36 J	<0.47	<1.9	< 0.94	<1.9	<1.9	<4.7	<4.7	<4.7	<0.47	<0.94	<0.94	<4.7	<1.9
WCC_09S	B-Sand	03/25/10	Primary	<0.94	<0.47	<0.94	< 0.47	<0.47	<1.9	<0.94	<1.9	<1.9	<4.7	<4.7	<4.7	<0:47	<0.94	<0.94	:<4.7.	<1.9

Notes:

Bold type indicates detectable concentration.

<= not detected at a concentration greater than the laboratory reporting limit indicated

B = Lab Qualifier DescriptionAnalyte was detected in the associated Method Blank

C-2 & C-2a = Calibration Verification recovery was below the method control limit for this analyte.

I = Internal Standard recovery was outside of method limits, matrix interference was confirmed, estimated value

J = estimated concentration detected below the laboratory reporting limit

L2 = Laboratory Control Sample and/or Laboratory Control Sample Duplicate recovery was below acceptance limits

L6 = Per the EPA methods, benzidine is known to be subject to oxidative losses during solvent concentration

RL3 = Reporting limit raised due to high concentrations of non-target analytes

(Units are µg/l)
Boeing Former C-6 Facility
Los Angeles, CA
Page 2 of 4

																				<u></u>
Well L.D.	Category	Sample Date	Sample Type	3,3'-Dichlorobenzidine	3-Nitroaniline	4,6-Dinitro-o-cresol	4-Bromophenyl phenyl ether	4-Chlorophenylphenyl ether	4-Nitrophenol	Acenaphthene	Acenaphthylene	Amiline	Anthracene	Benzidine	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(ghi)perylene	Benzo(k)fluoranthene	Benzoic acid
AW0074UB	Upper B-Sand	03/25/10	Primary	<94 RL3	<94 RL3	<94 RL3	<19 RL3	<9.4 RL3	<94 RL3	<9.4 RL3	<9.4 RL3	<190 RL3	<9.4 RL3	<94 L6,RL3	<94 RL3	<38 RL3	<38 RL3	<94 RL3	<9.4 RL3	130 J,RL3
CMW002	-C-Sand	03/23/10	Primary	<24 L2,RL3	<24 RL3	<24 RL3	<4.8 RL3	<2:4 RL3	<24 RL3	<2.4 RL3	<2.4 RL3	<48 L2,RL3	<2.4 RL3	<24 L6,RL3	<24 RL3	<9.5 RL3	<9.5 RL3	<24 RL3	<2.4 RL3	<95 RL3
EWC001	C-Sand	03/24/10	Primary	<4:7	<4.7	<4.7	<0.94	<0.47	<4.7	<0.47	<0.47.	<9.4	<0.47	<4.7 L6	<4.7	<1.9	<1.9	<4.7	<0.47	<19
IRZCMW002	C-Sand	03/23/10	Primary	<4.7 L2	<4:7	<4.7	<0.94	<0.47	<4.7	<0.47	<0.47	<9.4 L2	<0.47	<4.7. L6	<4.7	<1.9	<1.9.	<4:7	<0.47	<19
IRZCMW003	C-Sand	03/23/10	.Primary	<4.7 L2	<4.7	<4.7	<0.94	<0.47	<4.7	<0.47	<0.47	<9.4 L2	<0.47	<4.7 L6	<4.7	<1.9	<1.9.	<4.7	<0.47	<19
IRZMW002A	B-Sand	03/24/10	Primary	<4.7	<4.7	<4.7	<0.94	<0.47	<4.7	<0.47	<0.47	<9.4	<0.47	<4.7 L6	<4.7	<1.9	<1.9	<4.7	<0.47	<19
IRZMW004	B-Sand	03/23/10	Primary	<4.7 L2	<4.7	<4.7	<0.94	<0.47	<4.7	<0.47	<0.47	<9.4 L2	<0.47	<4.7 L6	<4.7	<1.9	<1.9	<4.7	<0.47	<19
MW0005	B-Sand	03/24/10	Primary	<4.7	<4.7	<4.7	<0.94	<0.47	<4.7	<0.47	<0.47	<9.4	<0.47	<4.7 L6	<4.7	<1.9	<1.9	<4.7	<0.47	<19
MWB003	B-Sand	03/23/10	Primary	<4.8 L2	<4.8	<4.8	<0.96	<0.48	<4.8	<0.48	<0.48	<9.6.L2	<0.48	<4.8 L6	<4.8	<1.9	<1.9	<4.8	<0.48	<19
MWB013	B-Sand	03/26/10	Primary	<4.7	<4.7	<4.7	<0.94	<0:47	<4.7	<0.47	<0.47	<9.4	<0.47	<4.7 L6	<4.7	<1.9	<1.9	<4.7	<0.47	<19
MWB014	.B-Sand	03/24/10	Primary	<4.7	<4.7	<4.7	<0.94	<0.47	<4.7	<0.47	<0.47	<9.4	<0.47	<4.7 L6	<4.7	<1.9	<1.9	<4.7	<0.47	<19
MWC004	C-Sand	03/25/10	Primary	<4.8:	<4.8	<4.8	<0.96	<0.48	<4:8	<0.48	<0.48	<9.6.	<0.48	<4.8 L6	<4.8	<1.9	<1.9	<4.8	<0.48:	<19
MWC009	·C-Sand	03/26/10	Primary	<4.8	<4:8	<4.8	<0.96	<0.48	<4.8	<0.48	<0.48	<9.6	<0.48	<4.8 L6	<4.8	<1.9	<1.9.	<4.8	<0.48	<19
MWC015	C-Sand	03/24/10	Primary	<4.7	<4:7	<4.7	<0.94	<0.47	<4.7	<0.47	<0.47.	<9.4	<0.47	<4.7, L6:	<4.7	<1.9	<1.9	<4:7	<0.47	<19
MWC016	C-Sand	03/24/10	Primary	<4.7	<4.7	<4.7	<0.94	<0.47	<4.7	<0.47	<0.47	<9.4	<0.47	<4.7 L6	<4.7	<1.9	<1.9.	<4.7	<0.47	<19
MWC021	C-Sand	03/26/10	Primary	<4.7	<4.7	<4.7	<0.94	<0.47	<4.7	<0.47	<0.47	<9.4	< 0.47	<4.7 L6	<4.7	<1.9	<1.9	<4.7	<0.47	<19
MWC023	C-Sand	03/25/10	Primary	<4.7	<4.7	<4.7	<0.94	<0.47	<4.7	<0.47	<0.47	<9.4	<0.47	<4.7 L6	<4.7	<1.9	<1.9	<4.7	<0:47	<19
MWG001	Gage	03/26/10	Primary	<4.8	<4.8	<4.8	<0.96	<0.48	<4.8	<0.48	<0.48	<9.6	<0.48	<4.8 L6	<4.8	<1.9	<1.9	<4.8	<0.48	<19
MWG002	Gage	03/26/10	Primary	<4.8	<4.8	<4.8	<0.95	<0.48	<4.8	<0.48	<0.48	<9.5	<0.48	<4.8 L6	<4.8	<1.9	<1.9	<4.8	<0.48	<19
MWG003	Gage	03/26/10	Primary	<4.8	<4.8	<4.8	<0.96	<0.48	<4.8	<0.48	<0.48	<9:6	<0.48	<4.8 L6	<4.8	<1.9	<1.9	.<4.8	<0.48	<19
MWG004	Gage	03/26/10	Primary	<4.7	<4.7	<4.7	<0.94	<0:47	<4:7	<0.47	<0.47	<9.4	<0:47	<4.7. L6	<4.7	<1.9	<1.9	<4.7	<0:47	<19
TMW_06	B-Sand	03/24/10	Primary	<4.7	<4.7	<4.7	<0.94	<0:47	<4.7	<0.47	<0.47	<9.4	<0.47	<4.7 L6	<4.7	<1.9	<1.9	<4.7	<0:47	<19
TMW_08	B-Sand	03/23/10	Primary	<4.9·L2	<4.9	<4.9	<0.97	<0.49	<4.9	<0.49	<0.49.	<9.7 L2	<0.49	<4.9 L6	<4.9	<1.9	<1.9	<4:9	<0.49	<19
TMW_10	B-Sand	03/26/10	Primary	<4.8	<4.8	<4.8	<0.96	<0.48	<4.8	<0.48	<0.48	<9.6	<0.48:	<4.8 L6:	<4.8	<1.9	<1.9	<4.8	<0.48	<19
TMW_15	B-Sand	03/25/10	Primary	<4.7	<4.7	<4.7	<0.94	<0.47	<4.7	<0.47	<0.47.	<9.4	<0.47	<4.7 L6	<4.7	<1.9	<1.9	<4.7	<0.47	<19
WCC_03S	B-Sand	03/25/10	Primary	<4.7	<4.7	<4.7	<0.94	<0.47	<4.7	<0.47	<0.47.	<9.4	<0.47	<4.7 L6	<4.7	<1.9	<1.9	<4:7	<0.47	3.6 J
WCC_09S	B-Sand	03/25/10	Primary	<4.7	<4.7	<4.7	<0.94	<0.47	<4.7	<0.47	<0.47.	<9.4	<0.47	<4.7 L6	<4.7	<1.9	<1.9	<4.7	<0.47	<19

Notes:

Bold type indicates detectable concentration.

< = not detected at a concentration greater than the laboratory reporting limit indicated

B = Lab Qualifier DescriptionAnalyte was detected in the associated Method Blank

C-2 & C-2a = Calibration Verification recovery was below the method control limit for this analyte.

I = Internal Standard recovery was outside of method limits, matrix interference was confirmed, estimated value

J = estimated concentration detected below the laboratory reporting limit

L2 = Laboratory Control Sample and/or Laboratory Control Sample Duplicate recovery was below acceptance limits

L6 = Per the EPA methods, benzidine is known to be subject to oxidative losses during solvent concentration

RL3 = Reporting limit raised due to high concentrations of non-target analytes

(Units are µg/l)
Boeing Former C-6 Facility
Los Angeles, CA
Page 3 of 4

:																					
Well I.D.	Category	Sample Date	Sample Type	Benzyl alcohol	bis(2- Chloroethoxy)methane	bis(2-Chloroethyl) ether	bis(2-Chloroisopropyl) ether	bis(2-Ethylhexyl) phthalate	Butyl benzyl phthalate	Chrysene	Dibenzo(a,h)anthracene	Dibenzofuran	Diethyl phthalate	Dimethyl phthalate	Df-n-butyl phthalate	di-n-Octyl phthalate	Fluoranthene	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene
AW0074UB	Upper B-Sand	03/25/10	Primary	<94 RL3	<9.4 RL3	<9.4 RL3	<9.4 RL3	<94 RL3	<94 RL3	<9.4 RL3	<9.4 RL3	<9.4 RL3	<19 RL3	<9.4 RL3	<38 RL3	<94 RL3	<9.4 RL3	<9.4 RL3	<19 RL3	<38 RL3	<94 RL3
CMW002	C-Sand	03/23/10	Primary	<24 RL3	<2:4 RL3	<2.4 RL3	<2.4 RL3	<24 RL3	<24 RL3	<2.4 RL3	<2.4 RL3	<2.4 RL3	1.1 B,J,RL3	<2.4 RL3	<9.5 RL3	<24 RL3	<2.4 RL3	<2.4 RL3	<4.8 RL3	<9.5 RL3	<24 RL3
EWC001	C-Sand	03/24/10	Primary	<4.7	<0.47	<0.47	<0.47	<4.7	<4.7	<0.47	< 0.47	<0.47	0.11 J	<0.47	<1.9	<4.7	< 0.47	<0.47	<0.94	<1.9	<4.7
IRZCMW002	C-Sand	03/23/10	Primary	<4.7	<0.47	< 0.47	<0.47	<4.7	<4.7	<0.47.	< 0.47	<0.47.	0.3 B,J	< 0.47	<1.9	<4.7	<0.47	< 0.47	<0.94	<1.9.	<4.7
IRZCMW003	.C-Sand.	03/23/10	Primary	<4.7	<0.47	<0.47	<0.47	<4.7	<4.7	<0.47	<0.47	<0.47	.0.23 B,J	<0.47	<1.9	<4.7	<0.47	<0.47	<0.94	<1.9	<4.7
IRZMW002A	B-Sand	03/24/10	Primary	<4.7	<0.47	<0.47	<0.47	<4.7	<4.7	<0.47	<0.47	<0.47	<0.94	<0.47	<1.9	<4.7	<0.47	<0.47	<0.94	<1.9	<4.7
IRZMW004	B-Sand	03/23/10	Primary	<4.7	<0.47	<0.47	< 0.47	<4:7	<4.7	<0.47	<0.47	<0.47	0.58 B,J	<0.47	<1.9	<4.7	<0.47	<0.47	<0.94	<1.9	<4.7
MW0005	.B-Sand	03/24/10	Primary	<4.7	<0.47	<0.47	<0.47	<4.7	<4.7	< 0.47	<0.47	<0.47	<0.94	<0.47	<1.9	<4.7 [.]	<0.47	<0.47	<0.94	<1.9	<4.7
MWB003	B-Sand	03/23/10	Primary	<4.8	<0.48	<0.48	<0.48	<4.8	<4.8	<0.48	<0.48	<0.48	0.33 B,J	<0.48	<1.9	<4.8	<0.48	<0.48	<0:96	<1.9	<4.8
MWB013	B-Sand	03/26/10	Primary	<4.7	<0.47	<0.47	<0.47	<4.7	<4.7	<0.47	<0.47	<0.47.	<0.94	<0.47	<1.9	<4.7	<0.47	<0:47	<0.94	<1.9	<4.7
MWB014	.B-Sand	03/24/10	Primary	<4.7	<0.47	<0:47	<0.47	<4:7	<4.7	<0.47	<0.47	<0.47	<0.94	<0.47	<1.9	<4.7	<0.47	<0.47	<0.94	<1.9	<4.7
MWC004	C-Sand	03/25/10	Primary	<4.8	<0.48:	<0.48	<0.48	<4:8	<4.8	<0.48	<0.48	<0.48	<0.96	<0.48	<1.9	<4.8	<0.48	<0.48	<0.96	<1.9.	<4.8
MWC009	C-Sand	.03/26/10	Primary	<4.8:	<0.48	<0.48	<0.48	<4:8	<4.8	<0.48	<0.48	<0.48	<0:96	<0.48	<1.9	<4.8	<0.48	<0.48	<0:96	<1.9.	<4.8
MWC015	C-Sand	03/24/10	Primary	<4.7	<0.47	<0.47	<0.47	<4.7	<4.7	<0.47	<0.47	<0.47	.0 .1 9.J	<0.47	<1.9	<4.7	<0.47.	<0.47	<0.94	<1.9	<4.7
MWC016	C-Sand	03/24/10	Primary	<4.7	<0.47	<0.47.	<0.47	<4.7	<4:7	<0.47.	<0:47	<0.47.	<0.94	<0.47	<1.9	<4.7	<0.47	<0:47	<0.94	.<1.9.	<4.7
MWC021	C-Sand	03/26/10	Primary	<4.7	<0.47	<0.47.	<0.47	<4.7	<4:7	<0.47.	< 0.47	<0.47.	<0.94	<0.47	<1.9	<4.7	< 0.47	< 0.47	<0.94	.<1.9.	<4.7
MWC023	C-Sand	03/25/10	Primary	<4.7	<0.47	< 0.47	<0.47	<4.7	<4.7	< 0.47	< 0.47	< 0.47	<0.94	<0.47	<1.9	<4.7	<0.47	<0.47	<0.94	<1.9	<4.7
MWG001	Gage:	03/26/10	Primary	<4.8	<0.48	<0.48	<0.48	<4.8	<4.8	<0.48	<0.48	<0.48	<0.96	<0.48	<1.9	<4.8	<0.48	<0.48	<0.96	<1.9	<4.8
MWG002	Gage:	03/26/10	Primary	<4.8	<0.48	<0.48	<0.48	<4.8	<4.8	<0.48	<0.48	<0.48	<0.95	<0.48	<1.9	<4.8	<0.48	<0.48	<0.95	<1.9	<4.8
MWG003	Gage:	03/26/10	Primary	<4.8	<0.48	<0.48	<0.48	<4.8	<4.8	<0.48	<0.48	<0.48	<0.96	<0.48	<1.9	<4.8	<0.48	<0.48	<0.96	<1.9	<4.8
MWG004	Gage:	03/26/10	Primary	<4.7	<0.47	<0.47	<0:47	<4.7	<4:7	<0.47.	<0:47	<0.47.	<0.94	<0:47	<1.9	<4.7	<0.47	<0.47	<0:94	<1.9	<4.7
TMW_06	B-Sand	03/24/10	Primary	<4.7	<0.47	<0.47.	<0.47	<4.7	<4:7	<0.47.	<0.47	<0.47.	0.11 J	<0:47	<1.9	<4.7	<0.47	<0.47	<0.94	<1.9	<4.7
TMW_08	.B-Sand	03/23/10	Primary	<4.9	<0.49	<0.49	<0.49	<4.9	<4.9	<0.49	<0.49	<0.49	0.29 B,J	<0.49	<1.9	<4.9	<0.49	<0.49	<0.97	<1.9	<4.9
TMW_10	.B-Sand.	03/26/10	Primary	<4.8:	<0.48	<0.48	<0.48	<4.8	<4.8	<0.48	<0.48	<0.48	<0.96	<0.48	<1.9	<4.8	<0:48	<0.48	<0.96	<1.9.	<4.8
TMW_15	B-Sand	03/25/10	Primary	<4.7	<0.47	<0.47	<0.47	<4.7	<4.7	<0.47	<0.47	<0.47	<0.94	<0.47	<1.9	<4.7	<0.47	<0.47	<0.94	<1.9	<4.7
WCC_03S	B-Sand	03/25/10	Primary	0.96 J	<0.47	<0.47	<0.47	<4.7	<4.7	<0.47	< 0.47	<0.47	< 0.94	<0.47	<1.9	<4.7	<0.47.	<0.47	<0.94	<1.9.	<4.7
WCC_09S	B-Sand	03/25/10	Primary	<4.7	<0.47	<0.47	<0.47	<4.7	<4.7	<0.47	<0.47	<0.47	<0.94	<0.47	<1.9	<4.7	<0.47.	<0.47	<0.94	<1.9.	<4.7

Notes:

Bold type indicates detectable concentration.

- < = not detected at a concentration greater than the laboratory reporting limit indicated
- B = Lab Qualifier DescriptionAnalyte was detected in the associated Method Blank
- C-2 & C-2a = Calibration Verification recovery was below the method control limit for this analyte.
- I = Internal Standard recovery was outside of method limits, matrix interference was confirmed, estimated value
- J = estimated concentration detected below the laboratory reporting limit
- L2 = Laboratory Control Sample and/or Laboratory Control Sample Duplicate recovery was below acceptance limits
- L6 = Per the EPA methods, benzidine is known to be subject to oxidative losses during solvent concentration
- RL3 = Reporting limit raised due to high concentrations of non-target analytes

(Units are µg/l)
Boeing Former C-6 Facility
Los Angeles, CA
Page 4 of 4

															<u> </u>				<u></u>	
WellLD	Category	Sample Date	Sample Type	Hexachloroethane	Indeno(1,2,3-cd)pyrene	Isophorone	Naphthalene	Nitrobenzene	N-Nitrosodi-n-propylamine	N-Nitrosodiphenylamine	o-Cresol	p-Chloroaniline	p-Chloro-m-cresol	p-Cresol	Pentachlorophenol	Phenanthrene	Phenol	p-Nitroaniline	Pyrene	Total Detected SVOCs
AW0074UB	Upper B-Sand	03/25/10	Primary	<57 RL3.	<38 RL3	<19 RL3	<19 RL3	<19 RL3	<38 RL3	<19 RL3.	7.2 J,RL3	<38 RL3.	<38 RL3	85 J,RL3	<38 RL3	<9.4 RL3	<19 RL3	<94 RL3	<9.4 RL3	13
CMW002	C-Sand	03/23/10	Primary	<14 RL3	<9.5 RL3	<4.8 C-2,RL3	<4.8 RL3	<4.8 RL3	<9.5 RL3.	<4.8 RL3	<9.5 RL3	<9.5 L2,RL3	<9.5 RL3	<24 RL3	<9.5 RL3	<2.4 RL3	<4.8 RL3	<24 RL3	<2.4 RL3	7.3
EWC001	C-Sand	03/24/10	Primary.	<2.8	<1.9	0.11 J	<0.94	<0.94	<1.9	<0.94	0.68 J	<1.9	<1.9	.0.79.√J	<1.9	<0.47	<0.94	<4:7	<0.47	<1.
IRZCMW002	C-Sand.	03/23/10	Primary	<2.8	<1.9	<0.94 C=2	<0.94	<0.94	<1.9	<0.94	<1.9	<1.9 L2:	<1.9	<4.7	<1.9	<0.47.	<0.94	<4:7	< 0.47	<1
IRZCMW003	C-Sand.	03/23/10	Primary	<2.8	<1.9	<0.94 ·C-2	<0.94	<0.94	<1.9.	<0.94	.<1:9	<1.9 L2	<1.9	<4.7	<1.9	<0.47	<0.94	<4.7	<0.47	<1
IRZMW002A	B-Sand	03/24/10	Primary	<2.8	<1.9	<0.94	<0.94	<0.94	<1.9	<0.94	<1.9	<1.9	<1.9	<4.7	<1.9	<0.47	<0.94	<4.7	<0.47	<1
IRZMW004	B-Sand	03/23/10	Primary	<2.8	<1.9	<0.94 C-2	<0.94	<0.94	<1.9	<0.94	<1.9	<1.9 L2	<1.9	<4.7	<1.9	<0.47	<0.94	<4.7	<0.47	<1
MW0005	.B-Sand	03/24/10	Primary	<2.8	<1.9	<0.94	<0.94	<0.94	<1.9	<0.94	<1.9	<1.9	<1.9	<4.7	<1.9	<0.47	<0.94	<4.7	<0.47	<1
MWB003	.B-Sand.	03/23/10	Primary.	<2.9	<1.9	<0.96 C-2	<0.96	<0.96	<1.9	<0.96	<1.9	<1.9 L2	<1.9	<4.8	<1.9	<0.48	<0.96	<4.8	<0.48	<1
MWB013	.B-Sand	03/26/10	Primary.	<2.8	<1.9	<0.94	<0.94	<0.94	<1.9	<0.94	<1:9	<1.9	<1.9	<4.7	<1.9	<0.47	<0.94	<4.7	<0.47	<1
MWB014	.B-Sand	03/24/10	Primary	<2.8	<1.9	<0.94	<0.94	<0.94	<1.9	<0:94	<1:9	<1.9	<1.9	<4.7	<1.9	<0.47	<0.94	<4.7	<0.47	<1
MWC004	C-Sand	03/25/10	Primary	<2:9	<1.9.	<0.96	<0.96	<0.96	<1.9	<0.96	<1:9	<1.9	<1.9	<4.8	<1.9	<0.48	<0.96	<4.8	<0.48	<1
MWC009	C-Sand	03/26/10	Primary	<2:9	<1.9	<0:96;	<0.96	<0.96	<1.9	<0.96	<1.9	<1.9	<1.9	<4.8	<1.9	<0.48	<0.96	<4.8	<0.48	<1
MWC015	.C-Sand	03/24/10	Primary.	<2.8	<1.9	<0.94	<0.94	<0.94	<1.9	<0.94	<1:9	<1.9	<1.9	<4.7	<1.9	<0.47	<0.94	<4:7	<0.47.	<1
MWC016	C-Sand	03/24/10.	Primary.	<2.8	.<1.9.	:<0:94.	<0.94	<0.94	<1.9	<0.94	<1.9	<1.9	<1.9	<4:7	<1.9	<0.47	<0.94	<4:7	<0.47	<1
MWC021	C-Sand	03/26/10.	Primary	<2.8	<1.9	<0.94	<0.94	<0.94	<1.9	<0.94	<1.9	<1.9	<1.9	<4:7	<1.9	<0.47.	<0.94	<4:7	<0.47	<1
MWC023	.C-Sand	03/25/10	Primary.	.<2.8	<1.9	< 0.94	<0.94	< 0.94	<1.9	<0.94	<1.9	<1.9	<1:.9	<4.7	<1.9	<0.47	<0.94	<4.7	<0:47	<1
MWG001	Gage	03/26/10	Primary	<2.9	<1.9	.<0.96	<0.96	<0.96	<1.9	<0.96	<1.9	<1.9	<1.9	<4.8	<1.9	<0.48	<0.96	<4.8	<0.48	<1
MWG002	Gage	03/26/10	Primary	<2.9	<1.9	.<0.95	0.13 J	<0.95	<1.9	<0.95	.<1.9	<1.9	<1.9	<4.8	<1.9	<0.48	<0.95	<4.8	<0.48	<1.
MWG003	Gage	03/26/10	Primary	<2:9	<1.9	.<0.96	< 0.96	< 0.96	<1.9	< 0.96	<1.9	< 1.9	<1.9	<4.8	<1.9	<0.48	<0.96	<4.8	<0.48	<1
MWG004	Gage	03/26/10	Primary.	<2:8	<1.9	<0.94	<0.94	<0.94	<1.9	<0:94	<1.9	<1.9	<1.9	<4.7	<1.9	<0.47.	<0.94	<4.7	<0.47	<1
TMW_06	.B-Sand	03/24/10	Primary.	<2.8	<1.9	<0.94	<0.94	<0.94	<1.9	<0:94	<1.9	<1.9	<1:9	<4.7	<1.9	<0.47	<0.94	<4.7	<0.47	<1
TMW_08	.B-Sand.	03/23/10	Primary	<2.9	<1.9	<0.97 · C-2	< 0.97	< 0.97	<1.9	< 0.97	<1.9	<1.9 L2	<1.9	<4:9	<1.9	<0.49	< 0.97	<4.9	<0.49	<1
TMW_10	.B-Sand	03/26/10	Primary	<2.9	<1.9.	<0:96	<0.96	<0.96	<1.9	<0.96	<1:9	<1.9	<1.9	<4.8	<1.9	<0.48	<0:96	<4.8	<0.48	<1
TMW_15	B-Sand	03/25/10	Primary	<2.8	<1.9	<0.94	<0.94	<0.94	<1:9	<0.94	<1.9	<1.9	<1.9	<4.7	<1.9	<0.47	<0.94	<4.7	<0.47	<1
WCC_03S	B-Sand	03/25/10	Primary.	<2.8	<1.9	<0.94	0.3 J	<0.94	<1.9	<0.94	5.9	<1.9	<1.9	8.2	<1.9	<0.47	0 .81 J	<4:7	<0.47.	.14.
WCC_09S	B-Sand	03/25/10	Primary	<2.8	<1.9	<0.94	<0.94	<0.94	<1.9	<0.94	<1.9	<1.9	<1.9	<4.7	<1.9	<0.47	<0.94	<4:7	<0.47.	<1.

Notes:

Bold type indicates detectable concentration.

- < = not detected at a concentration greater than the laboratory reporting limit indicated
- B = Lab Qualifier DescriptionAnalyte was detected in the associated Method Blank
- C-2 & C-2a = Calibration Verification recovery was below the method control limit for this analyte.
- I = Internal Standard recovery was outside of method limits, matrix interference was confirmed, estimated value
- J = estimated concentration detected below the laboratory reporting limit
- L2 = Laboratory Control Sample and/or Laboratory Control Sample Duplicate recovery was below acceptance limits
- L6 = Per the EPA methods, benzidine is known to be subject to oxidative losses during solvent concentration
- RL3 = Reporting limit raised due to high concentrations of non-target analytes

Table 8 Summary of Pesticides and PCB Analytical Results

(Units are µg/l) Boeing Former C-6 Facility Los Angeles, California

																								and the same		* * * * * * * *		12.5		
Well LD.	Category	Sample Date	Sample Type	4,4'-DDD	4,4-DDE	T.O.C. 17'4	Aldrim	alpha-BHC	Arodor 1016	Arodor 1254	beta-Benzenehexachloride	Chlordane	delta-BHC	Dieldrin	Endosulfan sulfate	Endosulfan-I	Endosulfan-П	Dadriii	Endrin aldehyde	Endrin ketone	HCH-gamma	Heptachlor	Heptachlor epoxide	p,p'-Methoxychlor	PCB-1221	PCB-1232	PCB-1242	PCB-1248	PCB-1260	Toxaphene
EWC001	C-Sand	03/24/10	Primary	<0.095	<0.095	<0.095	<0.095	<0.095	<0:95	<0.95	<0.095	<0.95	<0.19	<0.095	<0.19	<0.095	<0.095.	<0.095	<0.095	<0.095	<0.095	<0.095	<0.095	<0.095	<0.95	< 0.95	<0.95	<0.95	<0.95	<4.8
IRZCMW003	C-Sand	03/23/10	Primary	<0.095	<0.095	<0.095	<0.095	<0.095	<0.95	<0.95	<0:095	<0.95	< 0.19	<0.095	<0.19	<0.095	<0.095	<0.095	< 0.095	<0.095	<0.095	<0.095	< 0.095	<0.095	<0.95	<0.95	<0.95	<0.95	<0.95 C	<4.8
IRZMW002A	B-Sand	03/24/10	Primary	<0.095	<0.095	<0.095	<0.095	<0.095	<0.95	<0.95	<0.095	<0.95	<0.19	<0.095	<0.19	<0.095	<0.095	<0.095	<0.095	<0.095	<0.095	<0.095	<0.095	<0.095	<0.95	< 0.95	<0.95	<0.95	<0.95	<4.8
IRZMW004	B-Sand	03/23/10	Primary	<0.095	<0.095	<0.095	<0.095	<0.095	<0.95	< 0.95	<0.095	<0.95	< 0.19	<0.095	<0.19	<0.095	< 0.095	<0.095	<0.095	<0.095	<0.095	<0.095	<0.095	<0.095	<0.95	<0.95	<0.95	<0.95	<0.95 C	<4.8
MW0005	B-Sand	03/24/10	Primary	<0.095	<0.095	<0.095	<0.095	<0.095	< 0.95	< 0.95	< 0.095	<0.95	< 0.19	<0.095	<0.19	<0.095	< 0.095	<0.095	<0.095	<0.095	< 0.095	<0.095	<0.095	< 0.095	<0.95	< 0.95	<0.95	< 0.95	<0.95	<4.7
MWB003	B-Sand	03/23/10	Primary	<0.095	<0.095	<0.095	<0.095	<0.095	<0.95	< 0.95	<0.095	<0.95	<0.19	<0.095	<0.19	<0.095	<0.095	<0.095	<0.095	<0.095	< 0.095	<0.095	<0.095	<0.095	<0.95	<0.95	<0.95	<0.95	<0.95 C:	<4.8
MWC004	C-Sand	03/25/10	Primary	<0.096	<0.096	<0.096	<0.096	<0.096	<0.96	< 0.96	<0.096	<0.96	<0.19	<0.096	< 0.19	<0.096	<0.096	<0.096	<0.096	<0.096	<0.096	<0.096	<0.096	<0.096	<0.96	<0.96	<0.96	<0.96	<0.96	<4.8
MWC009	C-Sand	03/26/10	Primary	<0.095	<0.095	<0.095	<0.095	<0.095	<0.95	< 0.95	<0.095	<0.95	<0.19	<0.095	<0.19	<0.095	< 0.095	<0.095	<0.095	<0.095	< 0.095	<0.095	<0.095	<0.095	<0.95	< 0.95	<0.95	< 0.95	<0.95	<4.8
MWC015	C-Sand	03/24/10	Primary	<0.095	<0.095	<0.095	<0.095	<0.095	<0.95	< 0.95	<0.095	< 0.95	< 0.19	<0.095	< 0.19	<0.095	<0.095	<0.095	<0.095	<0.095	<0.095	<0.095	<0.095	<0.095	<0.95	< 0.95	<0.95	<0.95	<0.95	<4.7
MWC023	C-Sand	03/25/10.	Primary	<0.097	<0.097	<0.097	<0.097	<0.097	.<0.97	.<0.97	<0.097	<0.97	< 0.19	<0.097	<0:19	<0.097	<0.097	<0.097	<0.097	<0.097	<0.097.	<0.097	<0.097	<0.097	<0.97	.<0.97	.<0.97	.<0.97	.<0.97	<4.9
MWG001	Gage.	03/26/10	Primary	<0.095	<0.095	<0.095	<0.095	<0.095	<0.95	<0.95	<0.095	<0.95	< 0.19	<0.095	<0.19	<0.095	<0.095	<0.095	<0.095	<0.095	<0.095	<0.095	<0.095	<0.095	<0.95	.<0.95	<0.95	<0.95	<0.95	<4.8
MWG002	Gage	03/26/10	Primary	<0.096	<0.096	<0.096	<0.096	<0.096	<0.96	<0.96	<0.096	<0.96	< 0.19	<0.096	<0.19	<0.096	<0.096	<0.096	<0.096	<0.096	<0.096	< 0.096	<0.096	<0.096	<0.96	<0.96	<0.96	<0.96	<0.96	<4.8
WCC_03S	B-Sand	03/25/10	Primary	<0.095	<0.095	<0.095	.<0.095	<0.095	<0.95	< 0.95	<0.095	<0.95	< 0.19	<0.095	.<0.19	<0.095	<0.095.	<0.095	<0.095	<0.095	<0.095	<0.095	<0.095	<0.095	<0.95	.<0.95	< 0.95	<0.95	<0.95	<4.7

Notes:

Bold type indicates detectable concentration.

< = not detected at a concentration greater than the laboratory reporting limit indicated

C = Cal. verif. recovery greater than MCL for this analyte

Table 9

Summary of Metals and Hexavalent Chromium Analytical Results

(Units are mg/l)
Boeing Former C-6 Facility
Los Angeles, California

												<u></u>			<u> </u>							
									**********								*********					chromium
Well LD.	Category	Sample Date	Sample Type	Antimony	Arsenic	Barium	Beryllium	Вогоп	Cadmium	Chromium	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc	Hexavalent o
AW0074UB	Upper B-Sand	03/25/10	Primary	<0.01	0.11	0.32	<0.002	0.15	<0.005	<0.005	<0.01	<0.01	<0.005	<0.0002	0.0077 J	<0.01	<0.01	<0.01	<0.01	<0.01	0.02	<0.002
CMW002.	.C-Sand	03/23/10	Primary	<0.01	<0.01	0.06	<0.002		<0.005	<0.005	<0.01	<0.01	<0.005;	<0.0002	<0.02	<0.01	0.032	<0.01	0.0077 J	<0.01	-<0.02	<0.002;
EWC001	-C-Sand	03/24/10	Primary	<0.01	0.073	0.17	<0.002	0.14	.⊲0.005	0.0021 J	<0.01	0.0063 J	<0.005	<0.0002	0.0046 J	<0.01	.<0.01	<0.01	<0.01	<0.01	0.065	<0.002.
IRZCMW002	C-Sand	03/23/10	Primary	<0.01	<0.01	0.3	<0.002		<0.005	<0.005	<0.01	<0.01	0.0041 J	<0.0002	<0.02	0.004. J	<0.01	<0.01	<0.01	<0.01	<0.02	<0.002.
IRZCMW003	C-Sand	03/23/10	Primary	<0.01	<0.01	0.14	<0.002	0.18	<0.005	<0.005;	<0.01	<0.01	<0.005	<0.0002	<0.02	<0.01	0.037	<0.01	<0.01	<0.01	-<0.02	<0.002;
IRZMW002A	B-Sand	03/24/10	Primary	<0.01	<0.01	0.37	<0.002	0.21	.<0.005	0.0034 J	0.0027 J	0.0035 J	<0.005	.<0.0002.	.<0.02	0.0023 J	0.052	<0.01	0.016	0.0052 J	0.044	<0.002.
IRZMW004:	B-Sand	03/23/10	Primary	<0.01	<0.01	0.37	<0.002	0.15	<0.005	<0.005.	0.0036 J	<0.01.	0.0042 J	<0.0002	<0.02	<0.01	0.023	<0.01	<0.01	<0.01	<0.02	0.0014 J
IWC001	.C-Sand	03/24/10	Primary											-4.		·		-4-	**			0.023
MW0005	B-Sand	03/24/10	Primary	<0.01	<0.01	0.11	.<0.002	0.1	.<0.005	0.012	<0.01	0.0035 J	0.0066	0.00015 J	<0.02	<0.01	0.024	<0.01	0.012	0.0075 J	0.028	0.0084
MWB003	B-Sand	03/23/10	Primary	<0.01	<0.01	0.1	<0.002	0.12	<0.005	0.014	0.0033 J	0.0059 J	<0.005	<0.0002	0.002 J	0.0023 J	<0.01	<0.01	<0.01	0.0075 J	0.013 J	0.012
MWB013	B-Sand	03/26/10	Primary	<0.01	<0.01	0.032	<0.002		<0.005	0.0099	<0.01	<0.01	<0.005	<0.0002	0.014 J	<0.01	<0.01	<0.01	<0.01	<0.01	<0.02	0.0098
MWB014	B-Sand	03/24/10	Primary	<0.01	<0.01	0.19	<0.002		<0.005	0.012	<0.01	<0.01	<0.005	<0.0002	0.0045 J	<0.01	.<0.01	<0.01	<0.01	<0.01	0.0081 J	0.013
MWB019	B-Sand	03/26/10	Primary																			0.013
MWB027	B-Sand	03/25/10	Primary																			0.034
MWC004.	C-Sand	03/25/10	Primary.	<0.01	<0.01	0.064	.<0.002	0.12	.⊲0.005	<0.005	<0.01	<0.01	<0.005	<0.0002	0.0036 J	<0.01	.<0.01	<0.01	<0.01	<0.01	0.01 J	0.0003 J
MWC009	.C-Sand	03/26/10	Primary	<0.01	<0.01	0.074	<0.002	0.15	<0.005	<0.005.	<0.01	<0.01.	<0.005	<0.0002	0.0046 J	<0.01	<0.01	<0.01	<0.01	<0.01	<0.02	0.0008 J
MWC015	C-Sand	03/24/10	Primary	<0.01	<0.01	0.1	<0.002	0.14	<0.005	0.009	<0.01	<0.01	<0.005	<0.0002	0.0039 J	<0.01	<0.01	<0.01	<0.01	<0.01	<0.02	0.0078
MWC016	.C-Sand	03/24/10	Primary	<0.01	<0.01	0.18	.<0.002	0.26	.<0.005	0.0091	<0.01	<0.01	<0.005	<0.0002	0.0045 J	<0.01	.<0.01	<0.01	<0.01	0.0034 J	<0.02	0.0097
MWC017	.C-Sand	03/26/10	Primary																			<0.002.
MWC021	.C-Sand	03/26/10	Primary	<0.01	<0.01	0.12	<0.002		<0.005	<0.005	<0.01	<0.01	<0.005	<0.0002	0.0067 J	<0.01	0.019	<0.01	<0.01	0.0046 J	0.0061 J	0.0012 J
MWC023.	C-Sand	03/25/10	Primary	<0.01	<0.01	0.091	.<0.002	0.12	.<0.005	<0.005	<0.01	<0.01	<0.005.	<0.0002	-0.0032 J	<0.01	.<0.01	<0.01	<0.01	<0.01	.<0.02	<0.002.
MWG001	Gage	03/26/10	Primary	<0.01	<0.01	0.076	<0.002	0.15	<0.005	<0.005.	<0.01	<0.01.	<0.005	<0.0002	0.0089 J	<0.01	<0.01	<0.01	<0.01	<0.01	<0.02	<0.002.
MWG002.	.Gage	03/26/10	Primary	<0.01	<0.01	0.032	<0.002	0.12	<0.005	<0.005	<0.01	<0.01	0.0064	<0.0002	0.006 J	<0.01	<0.01	<0.01	<0.01	<0.01	0.03	<0.002
MWG003	Gage	03/26/10	Primary	<0.01	<0.01	0.11	.<0.002		.<0.005	<0.005	<0.01	<0.01	<0.005.	<0.0002	-0.0054 J	<0.01	.<0.01	<0.01	<0.01	<0.01	·< 0.0 2	<0.002.
MWG004	Gage.	03/26/10	Primary	<0.01	<0.01	0.047	<0.002		<0.005	<0.005	<0.01	<0.01.	<0.005	<0.0002	0.0066 J	<0.01	<0.01	<0.01	<0.01	<0.01	<0.02	<0.002
TMW_06	B-Sand	03/24/10	Primary	<0.01	<0.01	0.18	<0.002	0.13	<0.005	0.021	<0.01	<0.01	<0.005:	<0.0002	0.0043 J	<0.01	<0.01	<0.01	<0.01	0.0033 J	0.026	0.021
TMW_08	B-Sand	03/23/10	Primary	<0.01	<0.01	0.1	<0.002	0.13	.⊲0.005	0.0029 J	<0.01	0.0044 J	<0.005	<0.0002	.0.0039 J	<0.01	0.055	<0.01	<0.01.	<0.01	.0.0063 J	<0.002.
TMW_10	B-Sand	03/26/10	Primary	<0.01	<0.01	0.23	<0.002		<0.005	0.009	<0.01	<0.01.	<0.005	<0.0002	0.0062 J	<0.01	<0.01	<0.01	<0.01	<0.01	<0.02	
TMW_14	B-Sand	03/25/10	Primary				÷-									·					-~	0.012
TMW_15	B-Sand	03/25/10	Primary	<0.01	<0.01	0.099	<0.002		.<0.005	0.012	<0.01	<0.01	<0.005	.<0.0002	.0.0052 J	<0.01	.<0.01	<0.01	<0.01	<0.01	.<0.02	0.014
WCC_03S	B-Sand	03/25/10	Primary	<0.01	0.02	0.45	<0.002	0.19	<0.005	<0.005	<0.01	<0.01.	<0.005	<0.0002	<0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.02	<0.002⋅
WCC_09S	B-Sand	03/25/10	Primary	<0.01	<0.01	0.3	<0.002	0.17	<0.005	0.015	<0.01	<0.01	<0.005	<0.0002	0.005 J	<0.01	<0.01	<0.01	<0.01	<0.01	<0.02	0.017

Notes:

Bold type indicates detectable concentration.

< = not detected at a concentration greater than the laboratory reporting limit indicated

--= not analyzed

J = estimated concentration detected below the laboratory reporting limit

Table 10

Summary of 1,4-Dioxane, NDMA, Perchlorate, and pCBSA Analytical Results

(Units are µg/l)
Boeing Former C-6 Facility
Los Angeles, California

	<u> - Cartauri II, eessaa aegaatja</u>	<u> ^</u>			ostojsta aligiteke aassestojs. T		
Well LD.	Category	Sample Date	Sample Type	1,4-Dioxane	n-Nitrosodimethylamine	Perchlorate	4-Chlorobenzenesulfonic acid
AW0074UB	Upper B-Sand	03/25/10	Primary	13.	<0.0019	<4	<10
CMW001	C-Sand	03/26/10	Primary			· 	30,000
CMW002	C-Sand	03/23/10.	Primary	0.35 I,J	0.00077 J	<800 RL1	44,000
EWC001	C-Sand	03/24/10	Primary	0.79 J	<0.0019	<4	<10
IRZCMW002	C-Sand	03/23/10	Primary	<2:8	<0:0019	<4	<10
IRZCMW003	C-Sand	03/23/10	Primary	<2.8	<0.0019	<4	<10
IRZMW002A	B-Sand	03/24/10	Primary	1.1 L2,J	<0.0019	1.3 J	<10
IRZMW004	B-Sand	03/23/10	Primary	<2.8	:<0.0019	4.1	<10
IWC001	C-Sand	03/24/10	Primary				<10
MW0005	B-Sand	03/24/10	Primary	1.4 J	<0.0019	0.98 J	<10
MWB003.	B-Sand	03/23/10:	Primary	0.8 J	<0:0019	2.3 J	<10
MWB013	B-Sand	03/26/10	Primary	0.22 J	<0.0019		——
MWB014	B-Sand	03/24/10	Primary	<2:9	<0.0019	2 J	<10
MWB019	B-Sand	03/26/10	Primary	90.17.0°00044445064444505555555555555555555555		. ==	<10
MWC004	C-Sand	03/25/10	Primary	0.51 J	<0.0019	<4	<10
MWC009	C-Sand	03/26/10	Primary	0.59 J	<0.0019	1 J	<10
MWC015	C-Sand	03/24/10:	Primary	<2.8	<0.0019	1.3 J	<10
MWC016	C-Sand	03/24/10	Primary	0.42 J	<0.0019	3.4 J	<10
MWC017	C-Sand	03/26/10	Primary			==	11
MWC021	C-Sand	03/26/10	Primary	2.6 J	<0.0019	1.3 J	<10
MWC023	C-Sand	03/25/10	Primary	0.13 J	<0.0019	<4	<10
MWG001	Gage	03/26/10	Primary	0.12 J	<0.0019	.<4	<10
MWG002	Gage	03/26/10	Primary	<2:9	<0.0019	<4	<10
MWG003	Gage	03/26/10	Primary	0.13 J	<0.0019	<4	<10
MWG004	Gage	03/26/10	Primary	<2.8	<0.0019	<4	<10
TMW_06	B-Sand	03/24/10	Primary	<2.8	<0.0019	3.3 J	<10
TMW_08	B-Sand	03/23/10	Primary	<2.9	<0.0019	2.9 J	<10
TMW_10	B-Sand	03/26/10	Primary	<2.8	<0.0019	. ==	<10
TMW_11	B-Sand	03/26/10	Primary				<10
TMW_14	B-Sand	03/25/10	Primary				<10
TMW_15	B-Sand	03/25/10	Primary	0.09 J	<0.0019		· ±=
WCC_03S	B-Sand	03/25/10	Primary	0.76 J	:<0:0019	<4	<10
WCC_09S	B-Sand	03/25/10	Primary	0.16 J	<0.0019	2.7 J	<10

Notes:

Bold type indicates detectable concentration.

- < = not detected at a concentration greater than the laboratory reporting limit indicated
- - = not analyzed
- I = Internal Standard recovery was outside of method limits, matrix interference was confirmed, estimated value
- J = estimated concentration detected below the laboratory reporting limit
- L2 = Laboratory Control Sample and/or Laboratory Control Sample Duplicate recovery was below acceptance limits
- RL1 = Reporting limit raised due to sample matrix effects

Table 11 Summary of Inorganic Analytical Results

(Units are mg/l)
Boeing Former C-6 Facility
Los Angeles, California

Well LD:	Category	Sample Date	Sample Type	Flammability (degrees C)	Chloride	Nitrite	Nitrate-NO3	Sulfate	Total dissolved solids	Total suspended solids	Chemical Oxygen Demand	Sulfide, dissolved	Cyamides
AW0074UB	Upper B-Sand	03/25/10	Primary		430 MHA	<10 RL1	1.7	6.8	1,800				
CMW002	.C-Sand	.03/23/10	Primary		140	, 			680.				
CMW026	.C-Sand	-03/23/10	Primary		230	<5 RL1	<0.5	19					
EWC001	C-Sand	03/24/10	Primary	>94	300	<5 RL1	0.39 Ј	.17	790	12	<20	0.039 HFT,J	<0.025
IRZCMW001	C-Sand	03/23/10	Primary	menojanjanjanjanjanjanjananonajamovo	230	± ± .			.820	**	, = =- connections		
IRZCMW002:	C-Sand	03/23/10	Primary	·	.200	<0.5	<0.5	0.7	= ±-			= =	
IRZCMW003	C-Sand	03/23/10	Primary	>94	140	<2.5 RL1	0.88	38	720	6 J	<20	0.03 HFT,J	<0.025
IRZMW002A	B-Sand	03/24/10	Primary	>94	420	<5 RL1	4.9	52	1,300	49.	<20	0.027 HFT,J	<0.025
IRZMW004	B-Sand	03/23/10	Primary	>94	410	<10 RL1	13	24	1,600	7 J	<20	0.023 HFT,J	<0.025
MW0005	B-Sand	03/24/10	Primary	>94.	220	<5 RL1	12	35	580.	18	<20	0.042 HFT,J	<0.025
MWB003	B-Sand	03/23/10	Primary	>94	420	<10 RL1	10	35	1,600	70	<20	<0.1 HFT	<0.025
MWC004	C-Sand	03/25/10	Primary	>94	140	<0.5	4.1	30	500	2 J	<20	0.041 HFT,J	<0.025
MWC009	C-Sand	03/26/10	Primary	>94	110	<0.5	8.5	30	460	1 J	<20	0.053 HFT,J	<0.025
MWC015	C-Sand	03/24/10	Primary	>94.	140	<0.5	7.7	31	410	6 J	<20	0.024 HFT,J	<0.025
MWC016	C-Sand	03/24/10	Primary		190	<5 RL1	.20	70	630			**	
MWC023	C-Sand	03/25/10	Primary	>94	240	<10 RL1	< 0.5	23	.860	2 J	<20	0.034 HFT,J	<0.025
MWG001	Gage	03/26/10	Primary	>94.	74	< 0.5	<0.5	30	360.	1. J	<20	0.025 HFT,J	<0.025
MWG002	Gage	03/26/10	Primary	>94	86	<0.5	<0.5	-37	400.	4 J	<20	0.61 HFT	<0.025
TMW_06	B-Sand	03/24/10	Primary	 www.eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee	330	<5 RL1.	38	84	.930	<u>.</u>			
TMW_08	B-Sand	03/23/10	Primary		470	<10 RL1	7.3	· 22	1,600		 		
WCC_03S	B-Sand	03/25/10	Primary	>94	1,000	<10 RL1	1	29	3,100	.25	61.	0.067 HFT,J	<0.025
WCC_09S	B-Sand	03/25/10	Primary		410	<10 RL1	.17	86	1,400				

Notes:

Bold type indicates detectable concentration

<= not detected at a concentration greater than the laboratory reporting limit indicated

--= not analyzed

HFT = The holding time for this test is immediate. It was analyzed in the laboratory as soon as possible after receipt.

J = estimated concentration detected below the laboratory reporting limi

MHA = Due to high levels of analyte in the sample, the MS/MSD calculation does not provide useful spike recoveryinformation.

RL1 = Reporting limit raised due to sample matrix effects

Table 12

Summary of Dissolved Hydrocarbon Gases Analytical Results

(Units are µg/l)

Boeing Former C-6 Facility
Los Angeles, California

Well I.D.	Category	Sample Date	Sample Type	Ethane	Ethylene	Methane
AW0055UB	Upper B-Sand	03/25/10	Primary	1.3	1,100	13,000
AW0064UB	Upper B-Sand	03/25/10	Primary	0.74 J	550	9,700
AW0073C	C-Sand	03/25/10	Primary	<1	13	.30
AW0074UB	Upper B-Sand	03/25/10	Primary	<1	340	26
AW0075UB:	Upper B-Sand	03/25/10	Primary	<1	530	10,000
AW0077UB	B-Sand	03/25/10	Primary	1.4	360	11,000
CMW002	C-Sand	03/23/10	Primary	<1	<1	1.9
CMW026:	C-Sand	:03/23/10	Primary	<1	9.2	20,000
.EWB002:	B-Sand	03/25/10	Primary	1	280	13,000
IRZB0081	B-Sand	03/25/10	Primary	<1	370	5,000
IRZB0095	B-Sand	03/25/10	Primary	<1	6.9	4,500
IRZCMW001	C-Sand	-03/23/10	Primary	<1	0.75 J	4,900
IRZCMW002	C-Sand	.03/23/10	Primary	<1	93	22,000
IRZCMW003	C-Sand	-03/23/10	Primary	<1	70	22,000
IRZMW001A	B-Sand	03/24/10.	Primary	<1	0.92 J	8,800
IRZMW001B	B-Sand	03/24/10	Primary	<1	<1	9,300
IRZMW002A	B-Sand	03/24/10	Primary	<1	3.3	3,400
IRZMW002B	B-Sand	03/24/10	Primary	<1	4	7,600
IRZMW003A	B-Sand	.03/24/10	Primary	<1	<1	7,000
IRZMW003B	B-Sand	03/24/10	Primary	<1	<1	2,800
IRZMW004	B-Sand	03/23/10	Primary	<1	8.8	290
IRZMW005	B-Sand	-03/23/10	Primary	·<1	.21	1,900
MWB003	B-Sand	03/23/10	Primary	<1	<1	<1
MWB006	B-Sand	03/25/10	Primary	1	940	640
MWB012	B-Sand	03/24/10	Primary	<1	<1	<1.
MWB020	B-Sand	03/25/10	Primary	<1	<1	<1
MWB027	B-Sand	03/25/10	Primary	<1	<1	0.51 J
MWC024	C-Sand	03/23/10	Primary	<1	<1	:3,300
TMW_15	B-Sand	03/25/10	Primary	<1	<1	<1.
WCC_03S	B-Sand	03/25/10	Primary	·<1	18	1.4
WCC_04S	B-Sand	03/24/10	Primary	<1	<1	0.84 J
WCC_07S	B-Sand	03/25/10	Primary	<1	<1	<1

Notes:

Bold type indicates detectable concentration.

< = not detected at a concentration greater than the laboratory reporting limit indicated

J = estimated concentration detected below the laboratory reporting limit

Appendix A Field Forms

 Project Name:
 Boeing C-6 March 2010 Gauging Event
 Project Manager:
 Michael Rendina
 Project No.:
 1155.012

 Location:
 Torrance, CA
 Field Personnel:
 DML, DAB, BS, DM
 Date:
 3/22/2010

CGI Instrument ID: MuliRAE IR Solinst ID: -

Field Conditions: Partly Cloudy, Warm

Well ID	Previous Measurement Date	Previous Depth to Water	Field Personnel	Time	PID (ppm)	Maximum Previous CGI (%LEL)	Initial CGI (%LEL)	Time to Disperse (mm:ss)	Measureme nt Point	Depth to Water	Depth to Water #2	Change in DTW	Comments/Well Condition
EWB001	Mar-09	55.5	DM	8:16	0		NM	-	TOC-N	55.55	55.55	0.05	good
MWB028_	Sep-09	63.72	.DL.		1.3	0%	0.	-	TOC-N	63.56	(63.56)	-0.16	ok:
TMW_07:	Sep-09	60.78	DM	8:48	0	0%	0	-	, TOC-N	60.6	60.6	0.18	gross decon/replace rim sëal
TMW_08	Mar-09	60.39	DM	9:00	-0-		0	-	TOC-N	60.55	:60.55;	0.16	replace rim seal.
MWB003	Mar-09	63.44	DL	14:30	.0.	.5%	.0.	-	TOC-N	63.62	63.62	0.18	
MWC006	Mar-09	60:03	DM	9:13	:0		0	-	TOC-N	60.36	:60.36;	0.33	replace rim seal, bailed H2O
EWB002	Sep-09	60.4	DM	9:37				-	TOC-N	60.15	.60.15	-0:25	retap, replace rim seal, replace bolt, gross
AW0077UB	Sep-09	60.61	,DM	9:49	:0;	60%		·····	TOC-N	60.5	[60:5]		CH4 tag, no bolts, 18" lid
MWC011	Mar-09	60.29	,···DM,··.	10:00	:0:		:0:	-	TOC-N	60.62	60.62	0.33	replace rim seal, bailed H2O
AW0073C	:Sep-09	60.17	DM	10:06	.0.	0%	.0.	-	TOC-N	59.97	59.97	-0:2:	no bolts, 18" lid
WCC_06S	Sep-09	59.17	DM	10:15	.0.	.0%	.0.	-	TOC-N	59.04	59.04	-0.13	
MWB027	Sep-09	63.61	DM	10:25	·O-	0%	.0.	-	TOC-N	63.35	.63,35	-0:26	
AW0064UB	Sep-09	58.84	DM	10:34	6.4	31%	8%	>1:00	TOC-N	58.74	58.74		24" lid, no bolts, CH4 tag
AW0075UB	Sep-09	59:9	DM	10:43	15.6	30%	4%	>1:00	TOC-N	59.71	59.71	-0.19	18" lid, no bolts, CH4 tag
EWC001	Mar-09	58.95	DM	8:29			0	<u>-</u> ,	TOC-N	59.16	59.16	0.21	replace rim seal and bolts, bailed H@O
AW0074UB.	Sep-09	58:35	DM	10:53	.0.	13%	.0.	1	TOC-N	59.2	59.2	0.85	18" lid, no bolts
WCC_03S	Sep-09	58.98	DM	11:05		0%	0	- ,	TOC-N	59.05	59.05	0.07	retap, replace rim seal, replace bolts
MWB006	Sep-09	62.94	DM	9:18	1.5	1%	,.0.,	0:20	TOC-N	60.14	60.14	-2:8	
AW0055UB	Sep-09	60.09	DM	11:13	17	>100%		>1:00	TOC-N	59.92	59.92		CH4 tag, no bolts, 18" lid

 Project Name:
 Boeing C-6 March 2010 Gauging Event
 Project Manager:
 Michael Rendina
 Project No.:
 1155.012

 Location:
 Torrance, CA
 Field Personnel:
 DML, DAB, BS, DM
 Date:
 3/22/2010

CGI Instrument ID: MuliRAE IR Solinst ID: -

Field Conditions: Partly Cloudy, Warm

Well ID	Previous Measurement Date	Previous Depth to Water	Field Personnel	Time	PID (ppm)	Maximum Previous CGI (%LEL)	Initial CGI (%LEL)	Time to Disperse (mm:ss)	Measureme nt Point	Depth to Water	Depth to Water #2	Change in DTW	Comments/Well Conditon
BL-03	Sep-09	65.61	BS	8:15		0%			TOC-N	65.75	65.75	0.14	Well seal replaced
DAC-P1	Sep-09	61.3	BS	8:34	0	0%			TÖC-N	61.46	61.46	0.16	Well seal replaced
MWC007	Sep-09	57.98	BS	8:59	:0:	0%			TOC-N	57.99	57.99	0:01	
WCC_05S	Sep-09	59:31	BS	9:19	[.] 0 [.]	0%	0	-	TOC-N	59.33	59.33	0.02	
MWC004	Sep-09	58.65	··· BS	9:31	:0:	0%	:0:		TOC-N	58.63	58.63	-0.02	
WCC_12S	Sep-09	58:04	BS	9:35	0	0%	0	-	TOC-N	58.01	:58.01	0.03	
MWC022	Sep-09	. 58.11	BS	9:50	:0:	0%	:0:		TOC-N	58.02	58.02	0.09	Well seal replaced
MWB020	Sep-09	56.91	BS	10:00	0	0%	⁰	-	TOC-N	56.99	:56.99	0.08	Apron cracked
- WCC_09S	Sep-09	61.66	BS	9:40	:0:	0%		= ,	TOC-N	61.64	61.64	-0.02	
WCC_07S	Sep-09	58:77	BS	10:10	0	0%	0	-	TOC-N	58.78	:58.78	0:01	
MWC023	Sep-09	58:04	BS	10:15		0%	:0:	= ,	TOC-N	58.12	58.12	:0.08:	
WCC_04S	Sep-09	58:78	BS	10:24	0	0%	0	-	TOC-N	58.8	58.8	0.02	Well seal replaced
MWB007	Sep-09	. 57.76	BS	9:04		0%	:0:	= ,	TOC-N	57.81	57.81	0.05	Well seal replaced
TMW_14	Sep-09	66.21	BS	8:45	0	0%	0	<u>-</u>	TOC-N	66.32	66.32	0.11	Well seal replaced
TMW_15	Sep-09	64.42	BS	8:50		0%			TOC-N	64.48	64.48	0.06	
XMW-09	Mar-09	60.4	,=	-	<u>-</u>	0%	-	<u>-</u>	, TOC-N	-	<u>-</u>	· · · · · · · · · · · · · · · · · · ·	Montrose wells not gauged or sampled
CMW002	Sep-09	60.76	BS	10:32		0%			TOC-N	60.72	60.72	-0.04	

 Project Name: Boeing C-6 March 2010 Gauging Event
 Project Manager: Michael Rendina
 Project No.:
 1155.012

 Location: Torrance, CA
 Field Personnel: DML,DAB, BS, DM
 Date:
 3/22/2010

CGI Instrument ID: MuliRAE IR Solinst ID: -

Field Conditions: Partly Cloudy, Warm

Well ID	Previous Measurement Date	Previous Depth to Water	Field Personnel	Time	PID (ppm)	Maximum Previous CGI (%LEL)	Initial CGI (%LEL)	Time to Disperse (mm:ss)	Measureme nt Point	Depth to Water	Depth to Water #2	Change in DTW	Comments/Well Conditon
XMW-19	Mar-09	56.26	=	, <u></u>	4	0%	=		TOC-N	=	=		Montrose wells not gauged or sampled
MWB013	Sep-09	61.97	DML	9:40	0	0%	0		TÖC-N	61.84	61.84	0:13	
TMW_11	Sep-09	57.21	· DML··	10:10		0%			TOC-N	56.98	56.98	-0.23	good condition
CMW001	Sep-09	62.43	. DML .	10:18	¹ 0 ¹	0%	0	-	TOC-N	62.18	62.18	-0.25	no gasket
TMW_10	Sep-09	56.95	DML	10:36	:0:	0%	:0:		TOC-N	56.79	56.79	····-0.16····	hill encroaches on well, partially overgrown
MWC021	Sep-09	62:96	- DML	10:45		0%	0		TOC-N	61.66	61.66	1;3:	
MWG001	Sep-09	62.96	- DML	11:34	0:	0%			TOC-N	62.56	62.56	0.4	gross decon/replace rim seal, Bailed H2O
MWC009	Sep-09	61.21	. DML	11:45		0%			TOC-N	61	61	-0.21	Bailed H2O, replaced rim seal
MWB019	Sep-09	62.67	- DML	11:58		0%		2 ,	TOC-N	62.62	62.62	····	
MWC017	Sep-09	63.22	. DML .	12:05		0%	0	-	TOC-N	63.04	63.04	-0:18	replaced rim seal
MWG002	Sep-09	63.89	DML	12:14		0%			TOC-N	63.62	63.62	-0.27	Bailed H2O, replaced rim seal
IRZCMW002	Sep-09	63.28	- DML	8:43	0	11%	4%	20 sec	TOC-N	63.24	63.24	-0:04	
IRZMW001B	Mar-09	63.59	DML	9:05	0.1	1%	0		TOC-N	64.02	64.02	0.43	
IRZMW001A	Mar-09	63.63	DML	9:09	4.8	44%	>100%	>5min	TOC-N	64.03	64.03	0.4	
IRZMW002B	Mar-09	63.67	· DML	9:12		0%	0		TOC-N	63.81	63.81	0.14	gasket replaced
IRZMW002A	Mar-09	63.56	DML	9:13	11	0%	0	-	TOC-N	63.72	63.72	0:16	
IRZMW003B	Mar-09	63.67	DML	8:58		0%			TOC-N	63.83	63.83	0:16	gasket replaced
IRZMW003A	Mar-09	63.64	. DML	8:59	13.3	0%	6%	20 sec	TOC-N	63.78	. 63.78	0.14	

 Project Name:
 Boeing C-6 March 2010 Gauging Event
 Project Manager:
 Michael Rendina
 Project No.:
 1155.012

 Location:
 Torrance, CA
 Field Personnel:
 DML, DAB, BS, DM
 Date:
 3/22/2010

CGI Instrument ID: MultiRAE IR Solinst ID: -

Field Conditions: Partly Cloudy, Warm

Well ID	Previous Measurement Date	Previous Depth to Water	Field Personnel	Time	PID (ppm)	Maximum Previous CGI (%LEL)	Initial CGI (%LEL)	Time to Disperse (mm:ss)	Measureme nt Point	Depth to Water	Depth to Water #2	Change in DTW	Comments/Well Condition
MWG003	Sep-09	61.8	DAB	8.45	0.1	0%			TOC-N	61.44	61.44	-0.36	1/2 gasket, bailed H2O
MWG004	Sep-09	60.9	DAB	9:03	0.1.	0%			TÖC-N	60.62	60.62	-0.28	ok:
_TMW_06	Sep-09	59.01	DAB	9:21	0.2	0%	Ö		TOC-N	58.77	58.77	-0.24	ok:
MWB014	Sep-09	59.1	DAB	9:43	0.5	0%	¹ 0	-	TOC-N	58.82	58.82	-0:28	3/4" bolt not tapped, but ok for now.
CMW026	Sep-09	59.18	DAB	14:51	0.1	11%	:0:		TOC-N	58.87	58.87		ok
MWC015	Sep-09	59:92	DAB	10:00	0.4	0%	0	-	TÓC-N	59.67	:59.67	-0:25	well cap doesn't seal
MWB012	Mar-09	59.75	DAB	10:18	2.6		0		TOC-N	59.47	59.47		tubing in well, 5' down, 3/4" bolt not tapped
IRZCMW001	Sep-09	59:32	DAB	10:31	1.2	0%	0	-	TÓC-N	59.11	59.11	-0.21	no gasket
TMW_04	Mar-09	58.29	DAB	10:51	:0:		0		TOC-N	58.31	58.31	0.02	ok:
MWC016	Mar-09	60.27	DAB	11:13	0.5		0	-	TOC-N	60.28	60.28	0.01	ok
MW0005	Sep-09	59.29	DAB	11:38	1.4	0%			TOC-N	59.07	59.07	-0.22	well cap doesn't seal, broken gasket
IWC001	Sep-09	61.96	DAB	11:43	0.1.	0%	0	•	TOC-N	60.61	60.61	-1:35	broken gasket
MWC024	Sep-09	59.44	DAB	12:10	1.4	>100%	Ö:	= ,	TOC-N	59.16	59.16		
IRZCMW003	Sep-09	59:36	DAB	13:25	3.2	>100%	0	-	TOC-N	59.05	59.05	0:31	High CO2 4200ppm, boring open, needs
IRZB0081	Mar-09	60.17	DAB	13:54	:13.1		21	30 sec	TOC-N	60.09	60.09	-0.08	ok:
IRZB0095	Mar-09	59.76	DAB	14:10	0.2		0		, TOC-N	59.94	59.94	0.18	broken valve
IRZMW004	Mar-09	60.35	DAB	14:46	0.9				TOC-N	60.25	60.25	····	needs paint, lid eyehole broken
IRZMW005:	Mar-09	60.01	DAB	14:38	0.4		0		TÖC-N	59.91	59.91	0.1	ok:

	IRONMENTAL, INC		-::::- 0:	tourida ^	nnual	Sampling, M	ar-10	······································	D	ate:			3/2	S/ 201	0		
roject Name	Boeing	C-6 Fa		1155.01		Sampling, W	ai 10			repared	bv: /	801	S .				
roject No.:				1155.010 W0055L						eather:		ones					
Vell Identific					00					ump Inta		79		Screen:		69 - 89	
leasuremen	t Point Descript	on:		TUS		<u>. </u>				 _	3		Н	ı		J	K=HxI+J
A	В		C	;		D = C - B		E = B	- A	-	-			Tubing			1-141-1
Depth to LNA (ft-bmp)	PL Depth to Sta Water Lev (ft-bmp)		Well Der (ft-br	oth		ater Column bove Pump Intake(ft)	1	LNAI hickne		Dian	oing neter n)	V	ubing olume er/foot)	Length (feet)	i	Flow Cell Volume (Liters)	Initial Purge Volume (Liters)
NO	60.19		92	_	3	1.81	1	VM	ı	1	/4	0	.0054	79		0.8	1.73
10 70			1			ns/Foot				quipmen	t: YSI, D	edica	ated Low-f	ow			
			0.75		2	4	6		Purge	Method:	Micropurg	 ge					
	meter (inches) = 2		0.75		 .16	0.65	1.47			ondition:	K ²	£					
F - Gallo	Flow Controller Settings	Vo Pu	lume rged	Flow Ra	ate	Water Level (ft-bmp)	Tempe: (°C [+/- 1	rature	(m	l uctivity S/cm) - 10%]	Dissolv Oxyge (mg/L [+/- 10°	∕ed en .)	pH [+/- 0.1 p	(m	RP nV) 10%]	Turbidity (NTU) [+/- 10%]	Observation
	_	,	ters)	- 1 D		` ' '	22.9			3.22	0.400		6.70	-23	4.00	6.20	
					meter	s: 09-11-09	21.51			523.15	0.52		6.61	-11	3 6	9.45	
1457	50 PSI /30~ 1100 H	-	25	250		60.19	2/3		100	3.15	0.46		661	~ 1/	6.8	6.18	
1459		Û		1			21.		3		0.4	ŧ	6.61	1700]]	9.4	6.04	
0-150=15	21		25	500		60.19	21.6		1 3	116	0.4		6.61	-12		5.98	
21/5041	(0)		75			60.19	21.6			.16	0.3		6.6		3.2	5.69	
n 150 b	505	3.	25	U		60.19	2 1. 0	' (-10			1		· A · W		
Purge Start Time	Purge End Time	F	erage low _/min)	Total Volum Purge (Liters	ne ed	Total Casing Volumes Purged		ecover evel De 0x0.20)	pth	Samp (f	r Level at oling Time ft bmp)		Sample Collection Time			Sample Ident	
1452	1505	7_	50	3.25		N/A		NA		6	0-19	_	1506		W55L	JR_88@50100	03 25 _01
/ 75"							ield Par	amete	rs					UP:			
Puraina will	tes: (units) [stabilization criteria] rging will continue until three nsecutive measurements are within				is Iron	(mg/L)	PID (1	opm):		Ν	M		DRUM	NO:			

	IRONMENTAL, INC						·	Dat				314	₹ 5 / 2010			
Project Name	Boeing	C-6 Fac			ual Sampling, M	lar-10			e: pared	bye	D.		£ > 1 2010			
Project No.:				155.010					ather:			n 5.	/ ,			
Nell Identific				V0064UB	- a f				mp Inta		8.5	14 6/0-	Screen:		68.5 - 88.	5
	t Point Descripti	on:	***	17.7	00			Fui		3	<u>0.</u> ⊃	Н	1		J	K=HxI+J
Α	В		С		D = C - B		= B - A			3			Tubing	 		
Depth to LNA (ft-bmp)	Depth to Sta Water Leve (ft-bmp)		Well To Dept (ft-bm	th	Water Column Above Pump Intake(ft)	L	NAPL kness ((ft)	Dian	neter	V	ubing olume :er/foot)	Length (feet)		Flow Cell Volume (Liters)	Initial Purge Volume (Liters)
PM	58.08		92	. 8	3242319	2 ~	m		1	/4	0	.0054	78.5		0-8	1.72
					llons/Foot		Fiel	ld Eq	uipmen	t: YSI, D	edica	ated Low-f	low			
Well Dia	meter (inches) = 2		0.75	2	4	6	Pur	rge M	ethod:	Micropurg	je					
F - Gallor	s per foot of casi	ng	0.02	0.16	0.65	1.47	We	II Cor	ndition:		*****					7
Time	Flow Controller Settings	Volu Purç (Lite	ged	Flow Rate (mL/min)	Water Level (ft-bmp)	Temperatu (°C) [+/- 10%]	re Co	ondu (mS/ [+/- 1		Dissolv Oxyge (mg/L [+/- 10%	en)	pH [+/- 0.1 pl	ORF (mV) [+/- 10)	Turbidity (NTU) [+/- 10%]	Observations
	P	revious	Stabilize	ed Parame	ters: 09-10-09	24.01		3.5	3	0.410		6.61	-202.0	00	148.00	
	50 PST/50: 160 it			750	58.10	21.57		1.5	2.	6.50	0	7.11	-15	7,7	51.0	
	Jaks 1 201 100 EL	1.75			58.11	21.76		1.1		11.32		7.09	-153	. 6	429	
1321	e de la companya de l	2:25		***************************************	58.12	21.87	,	1.0	U	12.26)	7.05	3 -15%		21.7	
1323	200	2.7			58.12	21.95		0.9	2	0.2	.3	7.07	-151	X	15.3	
1325		3.75			58.12	21.92		0.4	8	6.2	6	7.00			120	
1327		3.7		No.	58.12	21.90		110	(0.2	6	7.06			11.9	
1329		4.2	5 ,	y	58.12	21.95	- /	1.03		0.25		7.04	-149	. <i>U</i>	11.7	
Purge Start Time	Purge End Time	Avera Flo (mL/r	w	Total Volume Purged (Liters)	Total Casing Volumes Purged		very Wa Depth 20) + B	ater	Samp (ff	Level at ling Time		Sample Collection Time			ample Identi	
1312	1329	25	O	4.25	N/A	<u> </u>	IA		43	58 58 12	- 1	33 <u>0 </u>		4UE	s_WG20100	3 2 5 _01
Notes: (uni	s) [stabilization of	riteria]			F	ield Parame						D DRUM	UP:			
Purging will consecutive	tes: (units) [stabilization criteria] rging will continue until three nsecutive measurements are within abilization criterion.				on (mg/L)	PID (ppm)	:		NI	M		UKUWI	INU.			

Project Nam	/IRONMENTAL, IN		Sitawida Annı	ıal Sampling, N	/ar_10		Date:			3/2	? 5/ 2010		
Project No.:	e. boeing	C-0 Facility,	1155.010	iai Samping, i	nai-10		Prepared	by:	Ωε	5n S.	,), 2010		
Well Identific	eation:		AW0073C				Weather:	-		rd4			
	nt Point Descript	ion:	TUC				Pump Inta		106	704	Screen:	96 - 110	3
Α	В		c	D = C - B	E =	B - A		G		Н	I	J	K=HxI+J
Depth to LNA (ft-bmp)	PL Depth to St. Water Lev (ft-bmp)	el D	Il Total epth -bmp)	Water Colum Above Pump Intake(ft)	LN	IAPL ness (ft	, Diar	bing neter in)	٧	Tubing Yolume iter/foot)	Tubing Length (feet)	Flow Cell Volume (Liters)	Initial Purge Volume (Liters)
NM	60.27	7 11	7	56.73	NM		1	/4	C	0.0054	106	0.8	1.4
			Gal	lons/Foot	1	Field	d Equipmen	ıt: YSI, I	Dedic	ated Low-fl	ow		
Well Dia	ameter (inches) = 2	0.7	5 2	4	6	Purg	ge Method:	Micropur	ge				
F - Gallo	ns per foot of casi	ng 0.0	0.16	0.65	1.47	Well	Condition:	600	d				
Time	Flow Controller Settings	Volume Purged (Liters)	Flow Rate (mL/min)	Water Level (ft-bmp)	Temperature (°C) [+/- 10%]	- (nductivity (mS/cm) [+/- 10%]	Dissol Oxyg (mg/l [+/- 10	en _)	pH [+/- 0.1 pH	ORP (mV) [+/- 10%	Turbidity (NTU) [+/- 10%]	Observations
	P		ilized Paramet	ers: 09-11-09	22.22		0.78	1.41	0	7.40	-26.00		
1028 1	(SP3) /50n / 100 FF	J-5-15	2-5	6031	21.74		0.78	1.19		7.41	-135.	 	
1030	***************************************	2.0	<i>i</i>	60 33	21.79		9.77	101		7.4 (
1032	September 1	2.5	****	60 33	21.81		6-870TT	0.5	(7.38			
1034	(SEE) PA SACRA	3.0		60.33	21.82		0.77	0.4		7.37	-157.		
1036		3.5	*A & Constitution of the C	60.33	21.84	(0.77	0.3		7. 35			
1838		4.5		60.33	21.85		77	0.3		7.33	-1591		
1040	<u> </u>	4.5		60.33	21.90		0.77	C.S	<u>১ </u>	7-31	-158.4	618	
Purge Start Time	Purge End Time	Average Flow (mL/min)	Total Volume Purged (Liters)	Total Casing Volumes Purged	80% Recove Level D (Dx0.20)	epth	Sampl	Level at ling Time bmp)		Sample Collection Time		Sample Identi	fication
1022	1040	250	4.5	N/A	NA	\	603	3		1041	AW0073	C_WG201003	Z 5 _01
	s) [stabilization c				ield Paramete	ers	D.O. (00)	<i></i>			JP:		
Purging will o	continue until thre measurements a	e	Ferrous Iro		PID (ppm):		0.3			DRUM N	10:		

Project Name	e: Boeing		, Sitewide	Annua	al Sampling, M	far-10		Date:				3/25	/ 2010		
Project No.:			1155.0	010				Prepar	ed by	y:	1300	S .			
Vell Identific	ation:		AW007	4UB				Weath	er:		Sun	<u> </u>			
<i>l</i> leasuremer	t Point Descript	ion:	TOC					Pump	Intak	e: 🧐	30'	8	Screen:	70 - 90	
A	В		c		D = C - B	E	= B - A		G		Н		l	J	K=HxI+J
Depth to LNA (ft-bmp)	PL Depth to Sta Water Lev (ft-bmp)		ell Total Depth (ft-bmp)	-	Water Columi Above Pump Intake(ft)		NAPL (ness (i		Tubir Diame (in)	ter	Tubing Volume (Liter/foot		Tubing Length (feet)	Flow Cell Volume (Liters)	Initial Purge Volume (Liters)
NM	59.46		ì		31.54	~	~		1/4		0.0054		80	0.8	1.23
· · · · · · · · · · · · · · · · · · ·			,		ons/Foot		Fiel	d Equipn	nent:	YSI, De	dicated Lo	ow-flov	N		
Well Dia	imeter (inches) = 2	(.75	2	4	6	Pur	ge Metho	d: M	icropurge)				
F - Gallon	ns per foot of casi	ng (.02	0.16	0.65	1.47	Wel	l Conditi	on:	too	d				
Time	Flow Controller Settings	Volume Purged (Liters)			Water Level (ft-bmp)	Temperatur (°C) [+/- 10%]		onductivi (mS/cm) [+/- 10%]	ty	Dissolve Oxygen (mg/L) [+/- 10%])H (1 pH)	ORP (mV) [+/- 10%]	Turbidity (NTU) [+/- 10%]	Observations
135631	P	revious Sta	bilized Pa	ramete	rs: 09-11 - 09	23.02		2.53		0.530	6	60	-158.00	6.20	
1356	55P>1/50= /10=F	1.25	25	<i>υ</i>	54.48	21.85	2	40		0.99		55	-103.8		
1358		1.75			54.48	21.89		2.42		0.74		.55	-106-8	147	
1400		215			59.48	21.92		2 40		0.52		56	-182.3	13,2	
1402		2.75			59.48	21.89		2.39		0.37	6.6	·	-113.9	9.91	
1404	and the same of th	3.15			59.48	21.91	*	2.36		031		57	-114.9	7.43	
1406	700 LL	3.75		atom _{s,000}	59.48	21.90		2.34		6.29		57	-115.1	7.27	
1407	レ	4.25	J	/	59.48	21.90		2.33		0.32	63	7	- 115-4	7.40	
			Tot	ol .	Total										
Purge Start Time	Purge End Time	Average Flow (mL/min)	Volu Puro (Lite	me jed	Casing Volumes Purged	80% Recov Level D (Dx0.20	Depth	Sai	m plin (ft br	• /	Samp Collect Time	ion		Sample Identi	
B49 13:	1427	250	ч.	25	N/A	N/	4	5	9,4	G	1408		L	B_WG20100	3 25 _01
Notes: (unit	s) [stabilization c	riteria]			F	ield Paramet	ters					DUI			
Purging will consecutive	tes: (units) [stabilization criteria] rging will continue until three asecutive measurements are within bilization criterion.				(mg/L)	PID (ppm):			NM		DRU	M NC):		

- Address of the second	IRONMENTAL, IN		ooility 9	Sitow	ido Appus	al Sampling, N	1ar_10	***************************************	T T	Date) •			3 / 2	5/ 2010		*****
Project Nam Project No.:	e: Boeing	C-0 F	acinty, s		5.010	ar Sampling, iv	101-10				ared l	bv:	Ben :		3		
Vell Identifi	notion:				075UB					Wea		- y ·	Party		oudy		
	nt Point Descript	ion:		00	07300						p Inta	ıke:	79		Screen:	69 - 89)
A	B	1011.	, , , , , , , , , , , , , , , , , , , ,	C		D = C - B		E = l					H		ı	J	K = H x I + J
Depth to LNA (ft-bmp)	Donth to St		Well De			Vater Columi Above Pump Intake(ft)		LN <i>A</i> Thickn	\PL	t)	Tub Diam (ir	oing neter	Tubing Volume (Liter/foo		Tubing Length (feet)	Flow Cell Volume (Liters)	Initial Purge Volume (Liters)
NM	59.95		4	3		33.05	Ì	VM			1/	/4	0.0054		79	0.8	1.23
						ons/Foot			Field	i Equi	ipment	t: YSI, D	edicated L	ow-flo)W	-	
Well Dia	ameter (inches) = 2		0.75	5	2	4	6		Purg	je Met	thod:	Micropurg	е				
F - Gallo	ns per foot of casi	ng	0.02	2	0.16	0.65	1.47	7	Well	Cond	lition:	<u>(-00</u>				,	
Time	Flow Controller Settings	Pu	lume rged iters)		w Rate nL/min)	Water Level (ft-bmp)	Tempe (°0 [+/- 1	2)	(nduct (mS/cn [+/- 10%	n)	Dissolv Oxyge (mg/L) [+/- 10%	n [+/- 0)H).1 pH	ORP (mV) [+/- 10%]	Turbidity (NTU) [+/- 10%]	Observations
	F	reviou	ıs Stabil	ized I	Paramete	rs: 09-11 - 09	22.	76		2.32		0.500	7	.62	-156.90	4.20	
1240	SOPX/SO. 110.14	j.	25	25	ب	39,95	220		6	<u> 2.5</u>		0.67		89		8.74	
1242	, in the second	V orebook	75		ATTENDED	39.95	22		2			0.50	<u> </u>	18		-	
1244		2	25		and a constant	59.95	22.	16		2 .71		<u>0'4</u>	*	87	-127.2		
1276		2.	75			59.95	22.1	2		2.72		039		188	-129.8		
1248		3.	25			59.95	22.		4	2.74	1			89		4.23	
1250		3.7	75			59.95	22	09		2.76		0.37		.89	- 133 0	3.93	
izsu	V	4	. 25_		<u> </u>	59.95	22.	16	2	L.74	1	031) <u></u>	.89	-134.4	360	
				1	otal	Total		***************************************			\A/_4 -	l and at	Samp	olo.			
Purge Start Time	Purge End Time	FI	rage ow /min)	Vo Pi	olume urged _iters)	Casing Volumes Purged		ecover evel De 0x0.20)	pth	er	Sampli (ft l	Level at ing Time bmp)	Collec Tim	tion e		Sample Ident	
1235	1252	25	O	4.	25	N/A		NA			59	.45	125			JB_WG2010	03 <u>2</u> 5 _01
						F	ield Par	amete	rs				↓	DU			
Purging will consecutive	tes: (units) [stabilization criteria] Iging will continue until three Issecutive measurements are within Ibilization criterion.				rrous Iron 1 · S 代	2	PID (p				NM	/1	DRU	IM N	O:		

Project Nam	VIRONMENTAL, IN		acility S	Sitew	ide Annu	al Sampling, N	∕ar-1	0		Da	te:			3/2	5 / 2010		
Project No.:	ie. Boeing	0-018	acinty, c		5.010	ai Camping, i	nai i	<u> </u>			epared	bv:		Ben S.			
Well Identifi	cation:				077UB						eather:	- ,	<u> </u>	10001			
	nt Point Descrip	tion:			りし					Pu	mp Inta	ake: 🦙	78		Screen:	70.5 -	85.5
A	В			C		D = C - B		E	= B - A		(G		Н		J	K=HxI+J
Depth to LNA (ft-bmp)	Depth to St Water Lev (ft-bmp)	/el	De	Tota pth bmp)		Water Colum Above Pump Intake(ft)			NAPL kness	(ft)	Dian	oing neter n)	V	ubing olume ter/foot)	Tubing Length (feet)	Flow Cell Volume (Liters)	Initial Purge Volum (Liters)
^	M 60.78	}	8	6		25.22		~	m		1	/4	C	.0054	78	0.8	1,22
				***************************************	Gall	ons/Foot			Fie	ld Eq	uipmen	t: YSI, E	Dedic	ated Low-fl	ow		
Well Di	ameter (inches) = 2		0.75	5	2	4		6	Pu	rge N	lethod:	Micropur	ge				
F - Gallo	ns per foot of cas	ing	0.02	2	0.16	0.65		1.47	We	ell Co	ndition:	l-	رى ق	4			
Time	Flow Controller Settings	Pu	ume rged ters)		w Rate nL/min)	Water Level (ft-bmp)		mperatur (°C) [+/- 10%]	e C	ondu (mS/ [+/- 1	ctivity (cm) 0%]	Dissolv Oxyge (mg/L [+/- 10	en .)	pH [+/- 0.1 pH	ORP (mV) [+/- 10%	Turbidi (NTU)] [+/- 10%	Observation
	F	Previou	s Stabili	ized l	Paramete	rs: 09-11-09		22.74		3.0)5	0.250		6.80	-199.80	4.00	
0931	5085 / 50, 1100 14	1.2	'5	23	50	60.80	2	0.97		3.19	3	0.8	4	6.92	-132	3 15.3	
0433	1	1.7	7.5			60.30	2	1132		3.0	6	0.6		6.88			
0435	and the second	27	5	100		60.80	2	1.46		3.00		0.5	7	6.88	-1461	10-3	
0937	· · · · · · · · · · · · · · · · · · ·	2.7	7.5			60.80		1.50		2.9		0.5		6.86		9,0	
0 9 3 9		3.				60.80		11.52		2.4		0.4		6.86			
0941		3.	75	9		60.80	2	-1.50		2.9	U	0.4	4	6.85	-1533	8.	6
Purge Start Time	Purge End Time	rage ow min)	Vc Pt	otal lume irged iters)	Total Casing Volumes Purged	80%	% Recove Level D (Dx0.20	epth	ater	Sampl	Level at ing Time bmp)	C	Sample Collection Time		Sample Ide	ntification	
0926	0941	25	U	3,	75	N/A		N/	4		60	-80		0942	" J	UB_WG201	003 25 _01
			1			F	ield	Paramet	ers						JP:		
consecutive	tes: (units) [stabilization criteria] rging will continue until three nsecutive measurements are within bilization criterion.				rrous Iron	(mg/L)	Р	ID (ppm):			NI	/ I		DRUM N	10:		

Project Nam	e: Boeing	C-6 Fa	acility, S	itewide .	Annua	l Sampling,	Mar-10		Date:			3/22	/ 2010		
Project No.:				1155.0°	10				repared		15.				
Well Identific	cation:			BL-03	3			1	Neather:		(100	dy_			
Measuremer	nt Point Descript	ion:		TOL				I	Pump Int	ake: 69			Scree	n: 59	- 79
	В		С		D =	C-B	E = B - A		G	н			1 10 7 24	J	$K = H \times I + J$
Depth to LNAPL (ft-bmp)	Depth to Static Water Level (ft-bmp)	٧	Vell Tota Depth (ft-bmp)			Column jht (ft)	LNAPL Thickness (ft)	Dia	ibing meter (in)	Tubin Volum (Liter/fo	ie		y Length eet)	Flow Cell Volume (Liters)	Initial Purge Volume (Liters
Cartelinery	65.75		79		13.	25	"Additional"		1/4	0.005	4	75/	69 75	0.808	1.2
			466		Gallo	ns/Foot		Field	Equipmen	it: QED, Pa	arcel B				
Well Dia	ameter (inches) = 2		0.75		2	4	6	Purge	Method:	Micropurge					
F - Gallo	ns per foot of casi	ng	0.02		0.16	0.65	1.47	Well 0	Condition:	6000					
Time	Flow Controller Settings	Volu Pur	ume ged	Flow F		Water Level (ft-bmp)	Temperature (°C) [+/- 10%]	(n	ductivity nS/cm) /- 10%]	Dissolved Oxygen (mg/L) [+/- 10%]		pH 0.1 pH]	ORP (mV) [+/- 10%	Turbidity (NTU) [+/- 10%]	Observations
<u>, 1800 - Parking I</u> San weber Barini	Previous Stabi	lized P	aramete	ers: 3/16	/2009	8:05:00 AM	19.03		3.02	2.310		6.79	78.00	7.60	
1:56	40 PST 50 - 100 FF	1.7		200		65.75	21.79	2.0	73	4.32	6	69	-3.4	55	
1258	ì	1.7		- Comment		65.75	21.84	2.9		3.98	6	69	1.0	52	
1301		2.2	3			65.75	21.82		9700	3.84		67	7.7	54	
1303		2.8				65.75	21.91	100-	98	3.74		2.67	11.7	5-2	
1306		3.1				65.75	21.97	2	98	3 67		.67	16.5		
1308	V	3.7	7	<u> </u>		65.75	22.0/	2	a C	3,63		6.08	19.0	48	
Purge Start Time	Purge End Time	Aver Flo (mL/r	ow	Tota Volun Purge	ne ed	Total Casing Volumes Purged	80% Recover Level De (Dx0.20)	pth	Samp (ft	Level at ling Time	Sam Colle Tin	ction ne		Sample Identi	ication
1250	1308	201	<u>ي</u>	3.7		N/A	NA		6 9	5.75	130			VG201003 Z7	01
Notes: (unit	ts) [stabilization continue until thre measurements an criterion.					Field Paramete PID (ppm): りし	rs			DR	DUP UM NO				

Project Name	IRONMENTAL, IN		ility C	itewide Annu	ol Complin	a Marí	10		Dat				31.	26/ 2010			
Project No.:	z. boeing	C-O Fac		1155.010	iai Sampiini	y, Iviai-	10		1	pared	by:)n		<u> </u>			
Well Identific	ation:			CMW001						ather:		<u>งพ</u>			•		
	t Point Descrip	tion:		C, N						mp Inta	_	112	r	Screen:		99 - 124	
A	В		C		D = C - I	3	E	= B - A		(G		Н			J	K = H x I + J
Depth to LNA (ft-bmp)	Depth to St Water Lev (ft-bmp)	/el	Well Dep	oth	Water Coli Above Pu Intake(f	mp		NAPL (ness (i	ft)	Dian	oing neter n)	V	ubing olume ter/foot)	Tubing Length (feet)	Vo	w Cell lume iters)	Initial Purge Volume (Liters)
4 نا	62.21		12	24	50		i	JA		1	/4	0	.0054	120	0.	75	1.4
				Gal	ions/Foot			Field	d Equ	uipmen	t: YSI, [Dedica	ated Low-fl	low			
Well Dia	meter (inches) = 4		0.75	2	4		6	Pur	ge Me	ethod:	Micropur	ge					
F - Gallor	s per foot of casi	ing	0.02	0.16	0.65		1.47	Wel	I Con	dition:	900	O					
Time	Flow Controller Settings	Volur Purg (Liter	ed	Flow Rate (mL/min)	Water Level (ft-bmp)		mperatur (°C) [+/- 10%]		onduc (mS/c [+/- 10		Dissolv Oxyge (mg/L [+/- 10	en .)	pH [+/- 0.1 pl	ORP (mV) [+/- 10%		Turbidity (NTU) [+/- 10%]	Observations
		revious	Stabiliz	ed Paramete	ers: 09-09-0	L_	24.63		0.7	4	0.230	0	9.24	-318.0		0.39	
רארט	84 psi	1.5		300	62.29	1	21.79		9.0		0.9	0	7.40		_	3	
0750	84 ps:	2.4		300	62.29		1.92		89		0.6		7.38			3	
0753	६५ ७८१	3-3	,	300	62.30		1.96). B		0.6		7.48			.2	
0756	84 psi	4.2		300	6230		1.92		- %		0.6		7.47			2	
0759	8 y ps:	5.1	l l	300	6230	2	1.90	0	. ક પ	``T	0.59	7	7.47	-29.	성	2	
Purge Start Time	Purge End Time	Averag	,	Total Volume Purged (Liters)	Total Casing Volumes Purged	;	% Recover Level C	epth	ter	Sampl	Level at ing Time bmp)		Sample collection Time		Samp	ole Identif	ication
0742	0903	300		3	N/A		N/	١		62	.3∙0		0800	CMW00	1_WG	201003 🦪	26 _01
	s) [stabilization o					Field	Paramet	ers						JP:			
consecutive r	ging will continue until three secutive measurements are within bilization criterion.)	Ferrous Iron		Р	ID (ppm):			NM	1		DRUM N	IO:			

Project Name: Boeing C-6 Facility, WDR Sampling, Mar-10									Date: 3 / 23 / 2010						
Project No.: 1155.010 Well Identification: 182CMW002 Measurement Point Description: TOC-1									Prepared by: Dr						
									Weather: SURNY						
									Pump Intake: {			Screen:	96 - 12	1 99.124	
A	A B		С		D = C - B	E =	B - A		G	Н		1	J	K = H x I + J	
Depth to LNAPL (ft-bmp) Depth to Stati		vel	Well Total Depth (ft-bmp)		Water Columi Above Pump Intake(ft)	LN.	LNAPL Thickness (ft)		Tubing Diameter (in)		ing ime 'foot)	Tubing Length (feet)	Flow Cell Volume (Liters)	Initial Purge Volume (Liters)	
NA 60.60		12	4	52		الم		1/4	0.0054		120	0.75	1-4		
,				Gall	ons/Foot		Field	l Equipmer	nt: YSI, D	edicate	d Low-flo	DW .			
Well Diameter (inches) = 4 0.7				5 2 4		6	Purg	je Method:	Micropurg	ge					
F - Gallons per foot of casing 0.0				0.16	0.65	1.47	Condition: GCCD								
Time	Flow Controller Settings	Dira		Flow Rate (mL/min)	Water Level (ft-bmp)	Temperature (°C) [+/- 10%]	e Conductivity (mS/cm) [+/- 10%]		Dissolv Oxyge (mg/L [+/- 10%	n pH [+/- 0.1 pH]		ORP (mV) [+/- 10%]	Turbidity (NTU) [+/- 10%]	Observations	
				lized Parameters: 09-09-09		21.40	1.87		0.200)	6.56	-121.00	0.94		
1124	70 05	1.5		250	60.63	21.36	36 1.0		0.7	7	7.40	63.1	5		
1127	70 PSI	2.			60.62	21.37	1.041		0.68			62.1	3		
(130	70 PS	3.			60.62	21.40			0.60		7.43	60.4	3		
1133	70 psi	3.			60.62	21.41			0.60	7	.42	58.7	3		
1136	70 psi	94.	5	250	60.62	21.41	1.	041	1 0.60		1.43	56.3	3		
Purge Start Time	Purge End Time				pth	ter Water Level at Sampling Time (ft bmp)		Coll	Sample Collection Time Sample Identification						
1118	1145	25	0	5	N/A	NA		60.	62	\$ 1	39	IBZCMW002_WG201003 23 _01			
Notes: (units) [stabilization criteria]				Field Parameters							DUP:				
Purging will continue until three consecutive measurements are within stabilization criterion.				Ferrous Iron (mg/L) PID (ppm):						DRUM NO:					

Project Nam	VIRONMENTAL, IN		S & Essili	ity WDD Co	mpling, Mar-1	^			Date:			210	7 / 2040	WOODANGE TO THE TOTAL CONTROL OF THE TOTAL CONTROL	
Project No.:	<u>e.</u>	oueing c		1155.010	mpling, Mar-	U			Prepared	b	DM	312	3 / 2010		
Well Identific	ration:			CMW026					Veather:						
	nt Point Descrip	tion:	TOC							ake: ১০৪	<u> </u>		Screen:	92 - 11	7
A	В		C	T .	D = C - B		E = B			G G		H	Joreen.	J J	· · · · · · · · · · · · · · · · · · ·
Depth to LNA (ft-bmp)	Donth to St	vel	Well T Dep (ft-bn	Fotal oth	Water Colum Above Pum Intake(ft)	n	LNA Thickne	PL	Tul Diar	bing neter	Tul Vol	oing ume r/foot)	Tubing Length (feet)	Flow Cell Volume (Liters)	Initial Purge Volume (Liters)
NA	58.78		3	7	m405 1	15	NA	\	1	/4	0.0	054	110	0.75	1.35
				Gal	lons/Foot			Field E	Equipmen	it: YSI, D	edicate	ed Low-flo)W		
Well Dia	imeter (inches) = 4		0.75	2	4	6		Purge	Method:	Micropurg	je		:	•	
F - Gallon	ns per foot of cas	ing	0.02	0.16	0.65	1.47	,	Well C	ondition:	Goe	0				
Time	Flow Controller Settings	Volu Purg (Lite	ged	Flow Rate (mL/min)	Water Level (ft-bmp)	Temper (°C [+/- 1	;)	(m	luctivity S/cm) - 10%]	Dissolv Oxyge (mg/L) [+/- 10%	n	pH [+/- 0.1 pH]	ORP (mV) [+/- 10%]	Turbidity (NTU) [+/- 10%]	Observations
	F	revious	Stabilize	ed Paramete	ers: 09-09-09	21.8		1	1.71	0.290		6.62	-137.00	0.49	
1030	70 psi	1.5		250	58.87	21.	39	l.	629	0.8	C. Village	6-66	-443	59	
i033	70 ps.	2.3		250	58.92	21.	39		631	0.81		7.06	-56.2	- 8	
1036	70 psi	3.0		250	58.95	21.3	35	1.0	034	0.79	(6.96	-68.8		
1039	70'ps:	3.8	Š	250	58,97	21-3	8	1.6	039	0.78		6.97	-77.5	4	
1042	70 psi	ધં - ૬		258	58.98	21.3	3		041	0.76		6.99	-82.8	ંન	
1045	70 psi	5.	3	250	58.99	21.3	36	1.6	941	0.72		6.96	-86.i	koj	
Purge Start Time	Purge End Time	Avera Flow (mL/m	w	Total Volume Purged (Liters)	Total Casing Volumes Purged	80% Re	covery vel Dep x0.20) +	th	Sampl	Level at ing Time bmp)	Col	ample llection Fime		Sample Identii	ication
1024	1058	250	2	6	N/A		NA		58	.99	10	9 P	CMW026_	WG201003	L3 _01
	s) [stabilization o			*		ield Para	V2020000000000000000000000000000000000	i				DUI	P:		
	measurements ai	n	Ferrous Iron		PID (pr	om):		NM	1	L	RUM NO	J:			

Project Nam	e: Boeing	C-6 Fa	icility, S	Sitewide	e Annu	al Sampling,	Mar-10	D	ate:		3	122	/ 2010		
Project No.:				1155.	010			Pi	epared	by: 🔏	en s.				
Well Identific	cation:			DAC-	-P1			W	eather:	С,	lovedy				
Measuremer	nt Point Descript	ion:	T	06				P	ump Inta	ake: 75	? /		Scree	n: 60	- 90
A	В		С		D:	= C - B	E = B - A	(•	Н	istalia s	1	Yain '	J	$K = H \times I + J$
Depth to LNAPL (ft-bmp)	Depth to Static Water Level (ft-bmp)	4	Vell Tota Depth (ft-bmp)			Column ght (ft)	LNAPL Thickness (ft)	Tuk Dian (i	neter	Tubin Volum (Liter/fo	ie	ubing l (fee	Length et)	Flow Cell Volume (Liters)	Initial Purge Volume (Liters
•	61.46	-	90					1.	/4	0.005	4	80'		.80	1.3
					Gall	ons/Foot		Field E	quipmen	t: QED, Pa	rcel B				
Well Dia	ameter (inches) = 4		0.75		2	4	6	Purge I	/lethod:	Micropurge					
F - Galloi	ns per foot of casi	ng	0.02		0.16	0.65	1.47	Well Co	ndition:	Foo	d				
Time	Flow Controller Settings	Volu Purç (Lite	ged	Flow (mL/r		Water Level (ft-bmp)	Temperature (°C) [+/- 10%]	(mS	uctivity 5/cm) 10%]	Dissolved Oxygen (mg/L) [+/- 10%]	p) [+/- 0.		ORP (mV) [+/- 10%]	Turbidity (NTU) [+/- 10%]	Observations
	Previous Stabiliz	zed Par	rameters	s: 3/16	/2009 1	10:10:00 AM	20.57	1.	89	2.690	7.1	3	41.00	32.60	
1345	4815I SUN/104+	1.3		200		61.47	21.43	3.6	7 1.93	3.65	6.5	76	10.1	18.60	
1347		1.8		7		61.47	21.51	£.4 a.	1.90	3.50	6.9	15	11.4	2,71	
1350		2.3		Season and the season		61.47	21.61		39	3.37	6.0	13	13.5	6.78	
1351		2.8				61.47	21.70	1	3 3	3.24	8.7	92	14.8		
1355	TO SECURITY OF THE PROPERTY OF	3.3				61.47	21.88		88	3,24	6.6	12	15.9	5.94	
1357	ン	3. 3		V		61.47	22,00	1.	88	3.18	6.6	72	17.2	603	
															¥.
Purge Start Time	Time Time Flow (mL/min)					Total Casing Volumes Purged	80% Recovery Level Dej (Dx0.20) +	oth	Sampl	Level at ing Time bmp)	Sample Collection Time			Sample Identifi	cation
1'33\$	1357	200	0	3.8	3	N/A	NA		61	1.47	1358		DAC-P1_	WG201003 Z	ے _01
Notes: (unit	s) [stabilization continue until three measurements and priterion.	e -	'n				Field Parameter PID (ppm):	S			DRUN	DUP: /I NO:		ecanonini	

	IRONMENTAL, IN							.				105	2 / 0040		
Project Nam	e: Boeing	C-6 Fac			al Sampling, N	viar-10		Date:				12:	3 / 2010		
Project No.:				155.010				Prepa			M				
Well Identific				WB001				Weath		Sin	- 1 ·				
	nt Point Descrip	tion:	T 06	- 1		·····		Pump				- 1	Screen:	59.2 - 89	
A	В		С		D = C - B	E	= B - A		G	}	Н		ı	J	K=HxI+J
Depth to LNA (ft-bmp)	PL Depth to St Water Lev (ft-bmp)		Well To Dept (ft-bm	th	Water Colum Above Pump Intake(ft)	L	NAPL kness (ft)	Tub Diam (ir	eter	Tubing Volume (Liter/foot)		Tubing Length (feet)	Flow Cell Volume (Liters)	Initial Purge Volume (Liters)
NA	55.55		89.7	2	19	1	VA		1/	4	0.0054		85	0.75	1-2
				Gall	lons/Foot		Fiel	d Equip	ment	: YSI, Pa	ortable Low-	flow			
Well Dia	imeter (inches) = 6		0.75	2	4	6	Pur	ge Meth	od:	Micropurg	е				
F - Galloi	ns per foot of casi	ing	0.02	0.16	0.65	1.47	Wel	l Condit	tion:	God		,			
Time	Flow Controller Settings	Volu Purç (Lite	ged '	Flow Rate (mL/min)	Water Level (ft-bmp)	Temperatu (°C) [+/- 10%]		nductiv (mS/cm) [+/- 10%]	. •	Dissolve Oxygei (mg/L) [+/- 10%	n pł [+/- 0.1	i l pH]	ORP (mV) [+/- 10%]	Turbidity (NTU) [+/- 10%]	Observations
	F	revious	Stabilize	ed Paramete	ers: 03-16-09	22.67		2.38		1.400	7.0	1	32.00	62.60	
08i6	62 ps:	1.2	2_	300	55.58	21.12		3.437		5-42	. હે.લ	55	220.3	96	
0819	6 L 1991	2.1		300	55.57	21.55		3.438		5.14	6.6	4	218.9	40	
0822	62 psi	3.0	1	300	55.58	21.58		3.442	L	5.13	6.6	7	2189	29	
0825	(2 ps)	3.9	(300	55,58	21.59		3.441		8:15	6.6		219.0	24	
0828	62 psi	4.9	b	300	55.58	21.60		3.442	-	5.06		٥	219.2	24	
0831	62 esi	5.	7	300	55.5%	21.61		3.441		5.08	6.7	2	219.3	22	
0834	62 151	6.6	e	300	55.50	21.64]	3.441		5.03	6.7	4	219.4	23	
										7570		ı			
Purge Start Time	Purge End Time	Avera Flow (mL/m	w	Total Volume Purged (Liters)	Total Casing Volumes Purged	80% Recov Level I (Dx0.2	Depth	Sa	ampli (ft b	Level at ng Time omp)	Sample Collection Time			Sample Identii	ication
0812	0836	300	>	7	N/A	N.	A	4	55.	5 °C	0835		EWB001_	WG201003 2	·3 _01
Notes: (unit	s) [stabilization o				F	ield Parame	ters					DUF			
	continue until thre measurements a criterion.		'n	Ferrous Iron		PID (ppm):			NM		DRUM	/ NC) :		

Project Nam	e: Boeing	C-6 F	acility,	Sitewide	Annu	ıal Sampling, I	Mar-1	0		Da	te:			3/2	5/20	10		
Project No.:				1155.0	10					Pre	pared	by: β	011					
Well Identifi	cation:			EWBO	02					We	ather:		010	vely				
Measuremei	nt Point Descrip	tion:		TOU	_					Pu	mp Inta		75		Screen	:	60 - 90	
Α	В			С		D = C - B		E	= B - A		(3		Н			J	K=HxI+J
Depth to LNA (ft-bmp)	Depth to S Water Lev (ft-bmp)	vel	De	l Total epth bmp)		Water Colum Above Pump Intake(ft)			NAPL (ness (ft)	Dian	oing neter	V	ubing olume ter/foot)	Tubing Length (feet)	1	Flow Cell Volume (Liters)	Initial Purge Volume (Liters)
NM	62.53		9	D .	2	9.47		NI	n		1.	/4	0	.0054	751		08	Lz
					Gall	lons/Foot			Fiel	d Eq	uipmen	t: YSI, D	edica	ated Low-flo)W			
Well Dia	ameter (inches) = 6		0.75	5	2	4		6	Pur	ge M	ethod:	Micropurg	je					
F - Galloi	ns per foot of cas	ing	0.02	2	0.16	0.65		1.47	Wel	I Cor	ndition:	6000	d					
Time	Flow Controller Settings	Pu	ume rged ters)	Flow I		Water Level (ft-bmp)		nperatur (°C) -/- 10%]		mdud (mS/d [+/- 1	ctivity cm) D%]	Oxyge (mg/L) [+/- 10%	n	pH [+/- 0.1 pH]	(m	RP 1V) 10%]	Turbidity (NTU) [+/- 10%]	Observations
5	10 PSE/30, 110 olf F	Previous	s Stabili	zed Par	amete	ers: 09-10-09		23.60		3.0	0	0.570		6.71	-93	3.60	31.60	
0958	ttso	1.2	5	250		60.53	21	-58	2	.59	İ	1.37	,	6.85	-99		5.42	
1000		1.7	15	(insulance		60.53		.71		.66		0.74		6.81	- 97		2.3 3	
1002		22:		antange a		60.53		.76 <u>.</u>		2.68		6.64		6.79	-99		2.45	
1004	100	2.7		***************************************	****	60-53		1.79		1.70		0.49		6.79	-10	0.8		
<u> </u>		3.7				60.53	_ 2	1.79		2.7		0.43		6.78	-102	10	2.52	
1008		3.7	15	<u></u>		60.53		1.77	2	1.7		0.45		-6.78	-10	24	2.61	
																		-
Purge Start Time	Purge End Time	Aver Flo (mL/r	w	Tota Volun Purge (Liters	ne ed	Total Casing Volumes Purged	80%	Recove Level D (Dx0.20)	epth	er	Sampli	Level at ng Time		Sample ollection Time		S	Sample Identif	ication
0953	1008	750	>	3.70	5	N/A		NA			60.5	; 3		1009	EWB0	02_\	NG201003 Z	S_01
					F	ield F	aramete	ers					DUI	P:				
consecutive r	es: (units) [stabilization criteria] ging will continue until three secutive measurements are within bilization criterion.				s Iron 66	(mg/L)	PIC) (ppm):			NM	:		DRUM NO) :			

Project Nam	e: Boeing) C-6 F	acility,	Sitew	ide Annu	ıal Sampling,	Mar-1	10	-	Da	ate:	<u> </u>		3/2	4 / 2010				
Project No.:				115	5.010					Pi	epared	by:	BA	n 5.					
Well Identific	cation:			EW	C001					W	eather:		_	ami					
Measuremer	nt Point Descrip	tion:	7	06			9			Pu	ımp Int	ake:	09.		Screen:	97 -	122		
А	В			С		D = C - B		E	= B - A	1		G		Н		J	ŀ	<= H x I + J	
Depth to LNA (ft-bmp)	PL Depth to Some Water Lew (ft-bmp)	⁄el	De	l Tota epth bmp)	il	Water Colum Above Pum Intake(ft)		LI Thicl	NAPL kness		Dian	oing neter	Vo	ubing olume er/foot)	Tubing Length (feet)	Flow Cel Volume (Liters)		Initial Purge Volume (Liters)	
NM	59.40		125			65.60		~	M		1	/4	0.	.0054	1095	0.8	1	. 4	
					Gall	lons/Foot			Fi	eld Ed	quipmen	t: YSI, P	ortab	le Low-flow	-				
Well Dia	imeter (inches) = 4		0.75	5	2	4		6	Pι	ırge N	lethod:	Micropurg	je						
F - Gallor	ns per foot of cas	ing	0.02	2	0.16	0.65		1.47	W	ell Co	ndition:		6 c	od					
Time	Flow Controller Settings	Pu	lume rged ters)	1	w Rate L/min)	Water Level (ft-bmp)		mperatur (°C) +/- 10%]	e C		ctivity /cm) 10%]	Dissolv Oxyge (mg/L) [+/- 10%	n	pH [+/- 0.1 pH]	ORP (mV) [+/- 109	(NTU) (Observations	
		reviou	s Stabili	ized l	Paramete	ers: 03-16-09		21.42		1.	36	1.200	_	2.06	-73.00	2.80			
1359 6	SP51/50, 1100H-	1.5		25	,o	65.65	2	240		1.10	5	0.91		6.85	-1031	14.0	5		
1401	•	20			° C	65.67	2	241		1.2	9	0.63	-con-	6.83	-1120				
1403		25				65.63		2.40		1.3		0.41	1	682	-1360	12.0	2		
1405		3 3				65-68	2)	1-33		1.0	15	0.34		681	- 142	5 11.6			
1407	0	3.5				65.68	2	2.33		1.4	9	0.36		6-80	a 16/6.	4 11.0			
1409	<u> </u>	ij.	υ	(65.68	2	2.33		1,5	18	0.35	5	6.80	-149	7 11-2			
Purge Start Time	Time Time Flow (mL/min)					Total Casing Volumes Purged	80%	6 Recove Level D (Dx0.20	epth	ater	Sampli	Level at ng Time		Sample ollection Time		Sample Ide	entificat	tion	
1353	1409	25	<u>ن</u>	اسا	٠٥	N/A		NA			65.	6 K	i	410	EWC001_WG201003 Z 4 _01				
Notes: (units	s) [stabilization c			F	ield l	Paramete	ers			 		DUI	<u> </u>		B				
	continue until thre measurements ar priterion	in	Fe	rrous Iron NM		PI	D (ppm):			NM		ı	DRUM NO	D: B_AU-LBZ	.403 @ 13	45			

Depth Wate (ft-	to Statistr Level bmp)	0.75 0.02	1155.0 IRZB00 Well Tota (ft-b)	081 C al Dep mp)		D = C - B Water Column Height (ft)	1 LNA	Weat Pump E=B	her: (# 5. 100 A 4 89 G = DxF One Casing Yolume (gallons)	Screen: H = screen leng Screen Volu (gallons)	ume M	I = 3G or G+2H inimum Purge Volume (gal.)		
Depth Wate (ft-	to Statistr Level bmp)	0.75 0.02	Well Tota (ft-b)	al Depmp)		Water Columi Height (ft)	1 LNA	Pump $E = B$ APL Thi	her: (G = DxF One Casing	H = screen leng	gth x F I	I = 3G or G+2H		
Depth Wate (ft-	to Statistr Level bmp)	0.75 0.02	89.5	al Dep		Water Columi Height (ft)	1 LNA	<i>E</i> = <i>B</i>	- A	$G = D \times F$ One Casing	H = screen leng	gth x F I	I = 3G or G+2H		
Depth Wate (ft-	to Stati ir Level bmp) (§	0.75	Well Tota (ft-b	al Dep		Water Columi Height (ft)	1 LNA	APL Thi	iaknaaa	One Casing	Screen Volu	ume M	inimum Purge		
(inches) =	ir Level bmp)	0.75	(ft-b)	mp)		Height (ft)	LNA		ickness						
(inches) =	sing Volun Purge	0.02	2	G		NM					1		(3)		
coot of cas Casing columes	Volun Purge	0.02			allons/F			<i>~</i>	m	0.6	0.5	/	· 8		
coot of cas Casing columes	Volun Purge	0.02		,		oot	·	Fiel	d Equipment:	Waterial	1/SIS5 0	<i>(</i>			
Casing olumes	Volun Purge		0.4	.	4	6	8	Pur	ge Method:	checkual	e + Tubio	· 4			
olumes	Purge	ne	J 0.1	16	0.65	1.47	2.61		II Condition:	bood			-		
	(gallon	ed	Flow Rate (gpm)		er Level t-bmp)	pH [+/- 0.1 pH]	Conduc (~5/ ₍₋ [+/- 10	~')	Turbidity (NTU) [+/- 10%]	Dissolved Oxygen (mg/L) [+/- 10%]	Temperature (°C) [+/- 10%]	ORP (mV) [+/- 10%]	Observations		
0.5	6.3	S.	Vm.	NO	7	681	1.76		71000	₹100,€ 0.56	20.51	-1441			
/, U	0.6		1			691	1.75		71000	0.63	19.83	-169-3			
.5	0.9		Account to the second	encodergraphical		686	1.76		71000	0.42	20:38	-1563			
. ن	1.2		constant			6.83	1.75	 >	>1000	0.40	21.02	-1493			
1.5	1.5					6.77	1.73	,	>1000	0.42	21.09	- 1483			
7.0	1.8			<u></u>		680	1.70	!	71000	0.40	21.01	-1436			
rge End Time			Gallon	าร	Casing Volume	y Water es Dej	Level oth			Sample Collection Time	n Sample Identification				
										0830	522B00812	wezo:00	325.01		
otes: (units) [stabilization criteria] urging will continue until three unsecutive measurements are within				•	[mg/L)	PID (ppn	-	4.	NM		:				
re T	ge End ime illization until the ements a	ge End Ave Flow illization criteria until three ements are with	ge End Average Flow (gpm) ilization criteria] until three ements are within	ge End Average Flow (gpm) ilization criteria] until three ements are within	ge End Average Flow (gpm) illization criteria] until three ements are within	ge End Average Flow (gpm) Ilization criteria] until three ements are within Total Gallons Purged Ferrous Iron (mg/L)	ge End Average Flow (gpm) Ilization criteria] Until three ements are within Interval Gallons Purged Total Casing Volumes Purged Purged Ferrous Iron (mg/L) Ferrous Iron (mg/L) PID (ppn in 2 left)	ge End Average Flow (gpm) Total Casing Volumes Purged Water Level Depth (Dx0.20) + B Ilization criteria] Until three ements are within Ferrous Iron (mg/L) PID (ppm):	ge End Average Flow (gpm) Total Casing Volumes Purged Water Level Depth (Dx0.20) + B Water Level Depth (Dx0.20) + B Water Level Depth (Dx0.20) + B Ferrous Iron (mg/L) Field Parameters Ferrous Iron (mg/L) PID (ppm):	Average Total Casing Volumes Purged Casing Composition C	Average Flow (gpm) Total Gallons Purged Total Casing Volumes Purged Depth (Dx0.20) + B Water Level at Sampling Time (ft bmp) Depth (Dx0.20) + B O 830	Average Flow (gpm) Total Gallons Purged Total Casing Volumes Purged Depth (Dx0.20) + B Water Level at Sampling Time (ft bmp) Sampling	Average Flow (gpm) Total Gallons Purged Total Casing Volumes Purged Sample Collection Time Sample Collection Ti		

Project Namé:	Boeing C	-6 Fac	ility, S	Sitewide	Ann	ual Sam	pling, Mar-10)	Date			03/25	/2010		
Project No.:				1155.					Prep	ared by:	Bens.				
Well Identificat	tion:			IRZB	095				Weat	ther:	(1000)	7			
Measurement	Point Descri	ption:	T	o C					Pum	p Intake:	39'		Screen:	T	
A		В			С		D = C - B		E = B	- A	G = 1	DxF	H = screen leng	gth x F	l = 3G or G+2H
Depth to LNAP (ft-bmp)	^{′L} │ Wate	to Stat er Level -bmp)		Well To	otal De -bmp)	epth	Water Colum Height (ft)	ın LN	APL Th	ickness	One C Volume		Screen Volu (gallons)		inimum Purge Volume (gal.)
NM	\$9.0	il		90			30.09		~m		06		0.5		1.8
* *						Gallons/		<u>L</u>	Fie	ld Equipme	ent: Unit	e 114 / 1	155556		
Well Diam	neter (inches) =		0.7	5	2	4	6	8		rge Method					
F - Gallons	• 197		0.0).16	0.65		2.61	-	ell Condition					
Time	Casing Volumes	Volui Purg (gallo	me ed	Flow Rate (gpm)	Wa	iter Leve (ft-bmp)		Condu	uctivity ⊷¹)	Turbidit (NTU) [+/- 10%	ty Dis	ssolved xygen mg/L) /- 10%]	Temperature (°C) [+/- 10%]	ORP (mV) [+/- 10%]	Observations
0735	0.5	0.3		~ M		, M	6.80	2.14		71003		43	20.40	-67.5	
0736	1.0	0 - 6		1	-	3	684	1.9		7100		15	21.28	- 86.6	
0739	1.5	0.5	7	Tienesti della			6.89	1.7		71000		' <i>O</i>	21.49	-92-2	
0741	2.0	į. z		amonto to			689	1.6		7/00		5	21.80	-945	
0744	25	1.5				October 1	689	1.6	8	7/000	/.1	9	21.53	- 97.3	
6746	3.8	1.8		L		i.L.	688	1.6	3	7100	0 1.2	2	21.47	- 493	
										ý					
Purge Start Time	Purge End Time	1	erage v (gpm)	Gall	tal ons ged	Tota Casir Volum Purg	ng Wate	Recovery er Level epth (.20) + B		ater Level anpling Time	e (ft Co	ample llection Time		nple Identifi	
6732	0746	~	~	· .	જ	30	įs	. 93	60	1/2	0	749	IPZB 0095-	-Ublowo3	×5.01
Notes: (units) Purging will co consecutive m stabilization cr	stabilization Intinue until the Deasurements			rous Iron	n (mg/L)	Field Para PID (p	pm):		NM		DUF DRUM NC	•			

	VIRONMENTAL, IN									T						1 0040		
Project Nam		Boeing (npling, Mar-10)			Da					231	2010		
Project No.:					5.010						epared			BN				
Well Identifi			IF	RZCI	/W001					-	eather:		<u>Sun</u>				00.4	147
Measureme	nt Point Descrip	tion:	Ĩ	06				T*****		Pu	mp Inta		7.5		Scr	reen:	92 - 1	γ
Α	В			C		D = C - B		E =	B - A		(}		Н		1	J	K=HxI+J
Depth to LNA (ft-bmp)	Depth to S Water Le	vel		Tota pth omp)		Vater Columi Above Pump Intake(ft)		LN Thick	APL ness	(ft)	Tub Diam (it	neter	V	ubing olume er/foot)	Le	ubing ength feet)	Flow Cell Volume (Liters)	Initial Purge Volume (Liters)
NM	59.14		Property P	7		57.86		NM	1		1,	/4	0	.0054	10	4.5	0.8	1.4
					Gall	ons/Foot			Fie	ld Eq	uipment	: YSI, D	edica	ated Low-f	low			
Well Di	ameter (inches) = 4		0.75	;	2	4		6	Pur	ge N	lethod:	Micropurg	je					
F - Gallo	ns per foot of cas	ing	0.02	2	0.16	0.65		1.47	We	II Co	ndition:	6-00	A	16-451) ! er j-	lep	Inced	
Time	Flow Controller Settings	Pur	ume rged ters)		w Rate L/min)	Water Level (ft-bmp)		mperature (°C) +/- 10%]	C	ondu (mS/ [+/- 1		Dissolv Oxyge (mg/L) [+/- 10%	n)	pH [+/- 0.1 pl	H]	ORP (mV) [+/- 10%]	Turbidit (NTU) [+/- 10%	Observations
		Previous	s Stabili	zed F	Paramete	rs: 09-09-09		22.47		1.2	25	0.280		7.00		-55.00	0.38	
0950	65051/50111061F	1.5		25	0	59,19	2	1.49		1.2	6	0.97	7	6.83		-110.9	3,52	
0952	1	7.0				59.21	2	1.61		1.2	6	0.57	7	6.83		-107.5	437	
0954		2.5	5			59.21	S	11.72		1.2	6	11.5		6.32		105.3	2.46	
0956		3.0)		1777-1770	59.21	2	1.77		1.2	6	0.44	1_	6.82		-102.6	2.58	
0458	Ů	35)	É	<u> </u>	.59.21	- 7	21.81		1-2	6	0.41	<u>) </u>	6.81	cs	- 100-3	2-59	
Purge Start		1	rage	Vo	otal lume	Total Casing	80%	% Recove		ater		Level at		Sample Collection			Sample Ide	ntification
Time	Time	(mL/	min)	(L	i rged iters)	Volumes Purged		(Dx0.20)) + B		(ft	bmp)		Time				
0844	0958	25		3.	5	N/A		NA			59.	21	1	0459		RZCMW	001_WG20	1003 23 _01
]			-		Paramete	ers				4	D DRUM I	UP:				
consecutive	otes: (units) [stabilization criteria] urging will continue until three onsecutive measurements are within abilization criterion.				rrous Iron	(mg/L)		ID (ppm): , 2			NN	1		ו ואוטאט	۷U:	1880		

ENV	IRONMENTAL, IN	C.				······································			****				3		
Project Nam	e: B	oeing C-6 Fa			npling, Mar-10			Date				3/2	3 / 2010		
Project No.:				5.010						by: <i>டூ</i>					
Well Identific	cation:	TA	2 CM	W002					ther:	Sun	24				
Measuremer	nt Point Descript	ion: Ţ	06					Pum		ake: ///	5 108	85 S	Screen:	99-12	// / - / - / - / - / - / - / - / - /
A	В		C		D = C - B	E	= B - A			3	H		1	J	K=Hxl+J
Depth to LNA (ft-bmp)	PL Depth to St Water Lev (ft-bmp)	el l	ell Tota Depth t-bmp)		Water Columi Above Pump Intake(ft)	L	NAPL kness ((ft)	Dian	oing neter n)	Tubir Volun (Liter/fo	ne	Tubing Length (feet)	Flow Cell Volume (Liters)	Initial Purge Volume (Liters)
NM	63.19	12	4	(6018	^	m.		1.	/4	0.005	54	11.5	03	1.9
				Gall	ons/Foot		Fie	ld Equ	ipmen	t: YSI, De	edicated	Low-flov	N		
Well Dia	ameter (inches) = 4	0.	75	2	4	6	Pui	rge Me	thod:	Micropurge	e				
F - Gallon	ns per foot of casi	ng 0.	02	0.16	0.65	1.47	We	ell Cond	dition:	0000		asker	10010	ared_	
Time	Flow Controller Settings	Volume Purged (Liters)		w Rate	Water Level (ft-bmp)	Temperatu (°C) [+/- 10%]	re C	onduct (mS/cr [+/- 10	n)	Dissolve Oxyger (mg/L) [+/- 10%	1 [+/	pH /- 0.1 pH]	ORP (mV) [+/- 10%]	Turbidity (NTU)] [+/- 10%]	Observations
0926	F	revious Stal	ilized l	Paramete	ers: 09-09-09	22.20		1.02		0.410		6.65	-35.00	0.11	
	65/51 300/100 lt	- 1.40 j.	1 2	00	63.25	20.57		1.8		1.77		2.34	- 825		
0812	2 CONSIGNATION OF THE PROPERTY	1.9		* Wall	63.27	20.91		1 8 T		0.68		34	-101.5		
0915		2.4			63,27	20.96		1.80		0.67		33	-104,6	7 381	
0817	approximation of the state of t	2.9			63-27	2099		1.90		0.60		-33	-109.3	3.69	
0930		3.4	-	<u> </u>	6317	21.01		1.90	رر	0.58	- 6	33_	-113-2	3.55	
Purge Start Time	Purge End Time	Average Flow (mL/min)	Vo Pu	otal olume urged .iters)	Total Casing Volumes Purged	80% Recov Level (Dx0.2	Depth	ater	Sampl (ft	Level at ling Time bmp)	Colle Ti	nple ection me		Sample Ident	
0814	2830	200	3	7	N/A	N	A		6	317	08.		1	_WG201003	01
Notes: (uni	ts) [stabilization of				F	ield Parame						DUI			
Purging will consecutive stabilization	continue until thre measurements a	ee re within	Fe	errous Iron 0-46		PID (ppm):			NN	Л	DI	RUM NO	J:		

ENV	IRONMENTAL, IN	C.						т				0.12	. / 0040		1 1104
Project Name	e: Bo	peing C-6			npling, Mar-10			Da			Pany.		·} / 2010		
Project No.:				5.010					pared			7 5.			
Well Identific	ation:			MW003				-	eather:		124			92 - 11	7
Measuremen	t Point Descript	ion:		TUC					mp Inta		14.5		Screen:		
A	В		С		D = C - B		E = B - A		(G		Н	l .	J	K=HxI+J
Depth to LNA (ft-bmp)	PL Depth to Sta Water Lev (ft-bmp)		Well Tota Depth (ft-bmp)		Water Columr Above Pump Intake(ft)		LNAPL ckness	(ft)	Diar	bing neter in)	Vo	i bing i lume er/foot)	Tubing Length (feet)	Flow Cell Volume (Liters)	Initial Purge Volume (Liters)
NM	59.22		117		57.78	~	m		1	1/4	0.	0054	104.5	03	1.4
				Gall	ons/Foot		Fie	ld Eq	uipmen	ıt: YSI, E	Dedica	ted Low-f	low		
Well Dia	meter (inches) = 4		0.75	2	4	6	Pu	rge M	lethod:	Micropur	ge				
F - Gallor	ns per foot of casi	ng	0.02	0.16	0.65	1.47	We	ell Co	ndition:	60	och				
Time	Flow Controller Settings	Volum Purge (Liters	d Fig	ow Rate nL/min)	Water Level (ft-bmp)	Temperat (°C) [+/- 10%		ondu (mS/ [+/- 1		Dissolv Oxyge (mg/L [+/- 10	en _)	pH [+/- 0.1 pl	ORP (mV) [+/- 10%	Turbidity (NTU) [+/- 10%]	Observations
	P	revious S	stabilized	Paramete	ers: 09-09-09	22.27		1.	16	1.07		7.01	-138.0	0.52	
1124	60 PSE /50. 1100 FL			50	57.92	21.33		1.23		1.73		6.68	-109.8	3.72	
1126	00172/1004	2.0		ę	57.94	21.30		1.25	-	0.74		6.57	-104.6		
1153		2.5			57.95	21-26		1.2	6	0.55		6.59	-101.5	3.57	
1130		3.0			57.95	21.29		1.7	<i>b</i>	0.52	-	6.60	-99.2	- 3.46	
1132	V	3.5		U	57.95	26.76		1.2	. 6	0.59	5	6.60	-98	3.53	
				Fotal .	Total										
Purge Start Time	Purge Start Purge End Flow Flow (mL/min) Pur (Lit				Total Casing Volumes Purged		overy W I Depth .20) + B	ater	Samp (fi	r Level at ling Time t bmp)	, C	Sample ollection Time		Sample Ident	
1118	1132	150	3	:5	N/A		NA		57	7.95		1133		V003_WG2010	003 23 _01
	1110				F	ield Paran	neters						UP:		
Purging will consecutive	otes: (units) [stabilization criteria] urging will continue until three onsecutive measurements are within abilization criterion.				n (mg/L)	PID (ppn 3, 2	1):		NI	M		DRUM	NO:		

Project Nam	VIRONMENTAL, IN		sility City	owide Appu	al Sampling, M	10 Apr. 10		Date	»:			3/2	4 / 2010		
Project Nam Project No.:	e. Boeing	C-0 Fac		155.010	ar camping, iv	101-10			pared	by: Be.	71		,		
Well Identifi	ootion:			MW001A					ther:		:), :014				
	nt Point Descript	ion:	1114	TOL					ıp Inta	ake: 7	0		Screen:	65 - 75	
A	B		С	100	D = C - B	E	= B - A			3	F	1	. [J	K = H x I + J
Depth to LNA (ft-bmp)	Denth to St		Well To Dept (ft-bm	:h	Water Columi Above Pump Intake(ft)	n L	NAPL kness (ft)	Dian	oing neter n)	Tub Volu (Liter	ıme	Tubing Length (feet)	Flow Cell Volume (Liters)	Initial Purge Volume (Liters)
M	64,40)	75	1	0.60	1	VM		1	/4	0.00	054	70	0.8	1.2
				Gal	lons/Foot		Fiel	ld Equi	ipmen	t: YSI, P	ortable	Low-flow		69	
Well Dia	meter (inches) = 1.5		0.75	2	4	6	Pur	ge Me	thod:	Micropurç	je				
F - Gallo	ns per foot of casi	ng	0.02	0.16	0.65	1.47	Wel	II Cond	dition:	600	d				
Time	Flow Controller Settings	Volui Purg (Lite	jed ^r	Flow Rate (mL/min)	Water Level (ft-bmp)	Temperatu (°C) [+/- 10%]		onduct (mS/cr [+/- 10°	n)	Dissolv Oxyge (mg/L [+/- 10%	n	pH +/- 0.1 pH]	ORP (mV) [+/- 10%]	Turbidity (NTU) [+/- 10%]	Observations
tetto.	P	revious	Stabilize	ed Paramete	ers: 03-13-09	21.55		2.09)	0.330		7.92	-98.00	13.20	
	45 15 / 500 /100/4	1.3	25	7500	64.42	21.59		2.5	3	09	/	7.15	-45.2	29.3	
12/3		1.7	75		64.42	21.73		2.5	4	0.6		7.14	-47.6	17.6	
1215		2.2	5		44.42	21.78	-2	2,54		0.40		7.14	-49.7	10.8	
1217	and delivery of the second	2/7	75	3/,20	64.42	21.80		2.54		035		7.14	-51.1	10,2	
1219		3.2	5		64.42	21.81		2.5	1	0.32		7.13	-52.6	11,1	
				T	Tatal							1 0000			
Purge Start Time	Purge End Time	Avera Flov (mL/m	N	Total Volume Purged (Liters)	Total Casing Volumes Purged	80% Recov Level (Dx0.2	Depth		Sampl	Level at ing Time bmp)	Col	ample llection Fime		Sample Identi	
1206	1219	251	J	3.25	N/A	N	A		<u>64.</u>	42	12	20	_L	01A_WG2010	03 24_01
	ts) [stabilization o					ield Parame						DU			
	continue until thre measurements a criterion.	n	Ferrous Iron	n (mg/L)	PID (ppm): U , V			ΝÑ	Λ		ORUM NO	U :			

ENV	IRONMENTAL, IN	С.						T				0.1%			
Project Name	Boeing	C-6 Fac			ıal Sampling, N	1ar-10		Da		. 2			∀ / 2010		
Project No.:				155.010					pared	by: /১	PA 5.				
Well Identific			IRZ	ZMW001B					ather:	رد در	51		Screen:	80 - 90	
Measuremen	t Point Descript	ion:	***	TOC_			w	Pu	mp Inta		>		Screen.	J	K=HxI+J
Α	В		С		D = C - B	E	= B - A		(G		Н	Tublica		K-HXI+J
Depth to LNAI (ft-bmp)	Depth to Sta Water Lev (ft-bmp)	I	Well To Dept (ft-bm	th	Water Column Above Pump Intake(ft)		NAPL kness	(ft)	Dian	neter	Vo	ibing olume er/foot)	Tubing Length (feet)	Flow Cell Volume (Liters)	Initial Purge Volume (Liters)
rm	64.21		90	2	5.79	r	v m		1	/4	0.	0054	85	0.8	1.3
				Gal	lons/Foot		Fie	ld Eq	uipmen	it: YSI, P	ortab	le Low-flow	V		
Well Diar	neter (inches) = 1.5		0.75	2	4	6	Pui	rge M	ethod:	Micropurç	ge				
F - Gallor	s per foot of casi	ng	0.02	0.16	0.65	1.47	We	II Co	ndition:	المعاشرا					
Time	Flow Controller Settings	Volu Purg	ged	Flow Rate (mL/min)	Water Level (ft-bmp)	Temperatu (°C) [+/- 10%]	re C	ondu (mS/ [+/- 1		Dissolv Oxyge (mg/L [+/- 10°	en)	pH [+/- 0.1 pH	ORP (mV) [+/- 10%]	Turbidity (NTU) [+/- 10%]	Observations
	P	revious	Stabilize	ed Paramet	ers: 03-13-09	21.59		1.7	71	0.260		7.81	-143.00		
11920	54) [/so, 100/			250	6424	20.96		1.7	5	1.03	3	7.05		4.55	
0922	1	20			64,24	21:13		1.7	7	0.8	6	7.06	33.2	5.06	
0424	o de composito de la composito	25			64.14	21.21		1.	76	0.7	/	7.07			
0926		3.0			64.24	21.28),-	77	0.7	,	7.07	7 19.3	4.04	
0928	Ů	3,5	5	U	64.29	21.34		· ·	77	0.6	6	7.07	15,2	3.96	
Purge Start Time	Purge End Time	Avera Flow (mL/m	w	Total Volume Purged (Liters)	Total Casing Volumes Purged	80% Recov Level (Dx0.2	Depth	ater	Samp	Level at ling Time	С	Sample collection Time		Sample Identi	
0914	0928	251	0	3.5	N/A	N	Α		64	474	0	929		01B_WG2010	0324/_01
Notes: (unit	s) [stabilization o	riteria]				ield Parame					_		JP:		*
Purging will o	continue until thre measurements a		Ferrous Iro	, -	PID (ppm)	100044-949000		NI	VI		DRUM N	iU:			

	VIRONMENTA					10 11 11	1 4	0		Da				312	4/20	10		1700
Project Nam	e: Bo	eing C-6 F	acility, S			al Sampling, M	iar-1	U			epared	by:	R~		, 0, 1 20			
Project No.:					5.010						ather:		1015 1211			·····		
Well Identific					W002A						mp Inta		73. °	-	Screen	:	68 - 78	
	nt Point Des		ř ·	700	T	D = C - B	222	T =	= B -			3 G	/ <i>)</i> , `	Н	1		J	K=HxI+J
Α		В		С				<u> </u>		· A					Tubing	a		
Depth to LNA (ft-bmp)	Wate	to Static r Level omp)	De	Tota pth bmp)		Vater Columr Above Pump Intake(ft)		LI Thicl	NAP knes	1	Dian	oing neter n)	V	T ubing /olume iter/foot)	Lengtl (feet)	h	Flow Cell Volume (Liters)	Initial Purge Volume (Liters)
NP	1 63.3	3 6	7	8				7	M		1	/4		0.0054	73.5	<i>'</i>	0.8	1.2
b					Galle	ons/Foot			F	Field Eq	uipmen	t: YSI,	Porta	ble Low-flo	W			
Well Dia	meter (inches)	= 1.5	0.75	5	2	4		6				Micropu						
F - Gallo	ns per foot of	casing	0.02	2	0.16	0.65		1.47	١	Well Co	ndition:	bood	16	asker	repla	1001	/	
Time	Flow Contro Settings	ller Pu	lume irged iters)		w Rate nL/min)	Water Level (ft-bmp)		mperatui (°C) [+/- 10%]	re	Condu (mS/ [+/- 1	cm)	Dissol Oxyg (mg/ [+/- 10	jen L)	pH [+/- 0.1 pl	_{பா} (r	nV) 10%]	Turbidity (NTU) [+/- 10%]	Observations
		Previo	us Stabil	ized l	Paramete	rs: 03-13-09		21.49		2.1	13	0.46		7.89	-10	02.00	126.00	
1107	45 /33/100300	hoch 1	25	7	50	63.3 6	7	21.25		2,5	15	1.5	/	7.10		511	182	
1109	1	2	75		- Overstood	63.38		1.48		2.4	4	0.8	0	7.10		<u>z, 9</u>	222	
7//1	OTO J. Companies	3.	75		Water Charles	6338	2	21.62		2.4	15		7	7.10	.4	0.6	236	
1113	-	3.	75			6338	,	21.6	1	2.4			8	7.11	.4.		238	
1115		Ĺ	ints		**************************************	63.38				2-4		0.4		7.11		4.6		
1117	U	4	,75	i		63.38		21,73		2 4	5	0.4	0	7.11	-7	5.6	227	
Purge Start Time	Purge Er Time	ia F	erage low _/min)	Vo Pi	otal olume urged iters)	Total Casing Volumes Purged	809	% Recov Level I (Dx0.2	Dept	th	Samp (ft	Level a ling Time bmp)		Sample Collection Time			Sample Identi	
1102	1117	25	, 0	Ч	75	N/A		N.	A		63	3.38		1118		1W002	2A_WG2010	03 2 4 _01
Notes: (uni	ts) [stabiliza		1		F	ield	Parame	ters						UP:				
Purging will consecutive	otes: (units) [stabilization criteria] arging will continue until three ansecutive measurements are within abilization criterion.				errous Iron		P	PID (ppm):			NI	VI		DRUM	NU:			

ENV	IRONMENTAL, IN		'W!!!!					Т			******		1 0040		
Project Name	e: Boeing	C-6 Facilit			l Sampling, M	lar-10		Date					4 / 2010		
Project No.:				5.010					pared		Bes				
Well Identific	ation:		IRZM	N002B					ther:		UNN	/		00 00	
Measuremen	t Point Descript	ion:		00	····			Pun	np Inta		89'		Screen:	83 - 93	
A	В		C		D = C - B	E	= B - A		(3		Н		J	$K = H \times I + J$
Depth to LNA (ft-bmp)	PL Depth to Sta Water Lev (ft-bmp)		ell Tota Depth (ft-bmp)		Vater Column Above Pump Intake(ft)	L	NAPL kness ((ft)	Dian	oing neter n)	Vo	bing lume er/foot)	Tubing Length (feet)	Flow Cell Volume (Liters)	Initial Purge Volume (Liters)
PM	63.63		93	2 4	7.37	^	m		1	/4	0.	0054	85'	0.8	j.3
				Gallo	ns/Foot	<u></u>	Fiel	ld Equ	ipmen	t: YSI, F	ortabl	e Low-flo	w		
Well Dia	neter (inches) = 1.5).75	2	4	6	Pur	ge Me	thod:	Micropur	ge				
F - Gallor	s per foot of casi	ng	0.02	0.16	0.65	1.47	We	II Con	dition:	[- a	od				
Time	Flow Controller Settings	Volume Purgeo (Liters)	110	w Rate L/min)	Water Level (ft-bmp)	Temperatu (°C) [+/- 10%]	re Co	onduc (mS/ci [+/- 10	m)	Dissolv Oxyge (mg/L [+/- 10	en	pH [+/- 0.1 pl	ORP (mV) [+/- 10%]	Turbidity (NTU) [+/- 10%]	Observations
	F	revious St	abilized F	Parameter	s: 03-13-09	21.10		1.90)	0.320		7.60	194.00		
0454	52 P51 /3 on/100 hk	1,5		30	63.63	21.10		1.6	G	0.8	0	7.16	5-28-5	14.2	
0456	3617-130:1/1-0.	2.0		763	63.63	21.14	i	.69		0.92		7.10	36.5	10.2	
0958		2.5			63.63	21.31	1	.69		0.71	7	7.15	-42.6		
1000		3.0			63.63	2138		1.68	}	0.6	0	7.15	-480		
1001		3,5			63.63	21,44		1.6	8	0.51	/	7.14	- 54.6		
1004		4.0			63.63	21.48		1.6	9	0.54	<i>i</i>	7.12	-57.	0 7.18	
Purge Start Time	Purge End Time	Average Flow (mL/min)	Vo	otal lume irged iters)	Total Casing Volumes Purged	80% Recor Level (Dx0.2	Depth		Sampl (ft	Level at ling Time bmp)	С	Sample ollection Time		Sample Ident	
0448	1004	250	4	.0	N/A	N	Α		6	3.63	1	005		02B_WG2010	10324_01
					F	ield Parame	eters						UP:		
Purging will consecutive	otes: (units) [stabilization criteria] urging will continue until three nsecutive measurements are within abilization criterion.				(mg/L)	PID (ppm)	:		NI	√l		DRUM I	NO:		

	IRONMENTAL, INC		011	میرسداد م	I Compling M	or 10		Da	te:		, ·->.	3/ 2	4/ 2010	<u> </u>		7/00 // // // // // // // // // // // //
Project Name	Boeing	C-6 Facility		de Annua 5.010	al Sampling, M	ar-10			epared	by:	Ben					
Project No.:				N003A					ather:		Suni					
Vell Identific		-	IKZIVI						mp Inta		Ġ.		Screen:	61 -	· 71	
***************************************	t Point Descript	ion:		OL			= B - A	1 4	1700-1700-	31.0. ₀		Н	1	J	K = F	lxI+J
A	В		С		D = C - B	E	= B - A			3			Tubing			
Depth to LNAI (ft-bmp)	PL Depth to Sta Water Lev (ft-bmp)	el	ell Tota Depth ft-bmp)		Water Column Above Pump Intake(ft)	L	NAPL kness	(ft)	Dian	oing neter n)	V	ubing olume ter/foot)	Length (feet)	Flow Cell Volume (Liters)	Purge	itial Volume iters)
PM	64.45		71	5,	55	N	7		1	/4	0	.0054	66	0.8	1.1	
				Gall	ons/Foot		Fie	ld Eq	uipmen	t: YSI,	Portal	ole Low-flov	v			
Well Diar	neter (inches) = 1.5	0	75	2	4	6	Pu	rge N	lethod:	Micropu	rge					
F - Gallor	ns per foot of casi	ng 0	.02	0.16	0.65	1.47	We	II Co	ndition:			Gasker	rep 19	iecl_		
Time	Flow Controller Settings	Volume Purged (Liters)		w Rate nL/min)	Water Level (ft-bmp)	Temperatu (°C) [+/- 10%]	re C	ondu (mS/ [+/- 1	ctivity (cm) 10%]	Dissol Oxyg (mg/ [+/- 10	jen L)	pH [+/- 0.1 pH	ORF (mV) [+/- 10) (NTL	Obs	ervations
	F	revious Sta	bilized l	Paramete	rs: 03-13-09	21.69		1.0	60	0.23		7.85	-82.0			
1234	-13 851 / 504 / 100 //			Ü	14.47	21.49		2.5	1	1.01		Doll	.49.			
1236	1	1.75		ſ	6447	21.56		2/3	3	0.87	7	7.08	-50.			
1238		2.75			64.47	21,59	à	2.3		6.79		7.07	- 50			
1240	200	7.75			4447	21.64		2.2	<u> </u>	0.73)	7.05	.5/-			
1247		3.75		レ	64.47	21.69	4	2.2	3	0.68	3	7.05	- 52	1 85.3		
Purge Start Time	Purge End Time	Average Flow (mL/min)	Ve	otal olume urged iters)	Total Casing Volumes Purged		very W Depth 20) + B	ater	Samp (ff	r Level a ling Tim t bmp)		Sample Collection Time		•	entification	
1279	1242	25 U	3.	25	N/A	N	Α		6	4.47		1243		003A_WG2	01003 2 4	01
	s) [stabilization of				F	ield Parame	eters						JP:			
Purging will	continue until thre measurements a	ee		errous Iron	ı (mg/L)	PID (ppm) 13, 3	:		NI	M		DRUM N	····			

	IRONMENTAL, IN						1 40	······································	Da	to:	100	*****	317	نا / 2010	******		
Project Nam	e: Boeing	C-6 Fa				l Sampling, N	lar-10			epared	by: 13	ien		7 2010			
Project No.:					5.010					eather:					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Well Identific		•	IF	₹∠IVI \	N003B てし [©]					mp Inta	ake 🔊	51	7	Screen:		80 - 90	
	nt Point Descript	ion:			- 0	D = C - B		E = B	<u>l</u>	,	G		Н	1		Ţ	K=HxI+J
Α	В			2		D = C - B		<u> </u>	- A					Tubing			
Depth to LNA (ft-bmp)	PL Depth to St Water Lev (ft-bmp)			Tota pth mp)		Vater Columr Above Pump Intake(ft)		LNAF ckne	PL ss (ft)	Dian	oing neter in)	Vo	ubing olume ter/foot)	Length (feet)	Vol ı (Lit	Cell ume ers)	Initial Purge Volume (Liters)
~ M	64.00		9	10	2	5.91	^	M		1	/4	0	.0054	85'	0.	8	1.3
		,	· · · · · · · · · · · · · · · · · · ·		Gallo	ons/Foot			Field Ec	uipmen	t: YSI, F	ortab	ole Low-flow	/			
Well Dia	meter (inches) = 1.5		0.75		2	4	6		Purge N	lethod:	Micropur	ge					
F - Gallo	ns per foot of casi	ng	0.02		0.16	0.65	1.47		Well Co	ndition:		60	95C/				
Time	Flow Controller Settings	Pur	ume ged		w Rate	Water Level (ft-bmp)	Temperat (°C) [+/- 10%		(mS	ctivity /cm) 10%]	Dissolv Oxyge (mg/L [+/- 10°	en .)	pH [+/- 0.1 pH	ORP (mV) [+/- 10%		urbidity (NTU) +/- 10%]	Observations
	F	revious	s Stabili	zed F	Paramete	rs: 03-13-09	21.40		1.	84	0.390		7.78	-176.00		24.00	
1017	52 PSI/50, 1100 N	1,5	5	75	0	64.11	20.8		/.	62	1.1	~	7.12	-98	<u></u>	.2.0	
1024	1	2.0	0		i	64.11	21.0	7	1.	61	0.8		7.10			4.1	
1032		2,0	<u> </u>		AND INCIDENCE OF THE PARTY OF T	64.11	21.25			60	4.6		7.07	7 -94,	2 6	<u>5.0</u>	
1034		3. (64.11	2 1.30			<u> ΰυ</u>	0.5		7.07	-92.5	7	5.9	
1036	O-PARTIE CO	3.5				64.11	21.42			50	0.40		7.07	- 97,2		5,5	
1038	Ů	4,	0		<u> </u>	64.11	21.48		1.6	00	0.4		707	-92.6	- /	5:0	
Purge Start Time	Purge End Time	Aver Flo	w	Vo Pi	otal lume irged iters)	Total Casing Volumes Purged	80% Reco		th	Samp	Level at ling Time		Sample Collection Time			le Identi	
1022	1038	25	U		10	N/A		NA		64	(:11		1039		003B_V	VG2010	03 Z 4 _01
Notes: (uni]			F	ield Param	neters	S					JP:			•		
Purging will consecutive	otes: (units) [stabilization criteria] irging will continue until three insecutive measurements are within abilization criterion.				errous Iron		PID (ppn	1):		NI	VI		DRUM N	IU:			

	TRONMENTAL, IN		aility C	itowido /	\nnua	l Sampling, M	1ar_10		ח	ate:			3/8	3 / 2010		
Project Name Project No.:	e. bueing	U-0 Fa		1155.01		ii Garripiirig, iv	iai-10			repared	bv: R	01		pp		
Well Identific	action:			RZMW0						eather:		SUNI				
	t Point Descript	ion:		06						ump Inta	ake: 🤊	7.5	//]	Screen:	65 - 90)
A	В		1	<u> </u>		D = C - B		E = B	- A	T	g (Н	I	J	K = H x l + J
Depth to LNA (ft-bmp)	Donth to St	atic rel	Well	Total pth	-	Vater Columi Above Pump Intake(ft)		LNAP		Dian	oing neter in)	V	ubing olume ter/foot)	Tubing Length (feet)	Flow Cell Volume (Liters)	Initial Purge Volume (Liters)
NM	60.40)	Äl)	2	.9.60	1	UM		1	/4	0	.0054	77-5	0.8	1,25
						ons/Foot			Field E	quipmen	t: YSI, F	Portal	ole Low-flov	N		
Well Dia	imeter (inches) = 4		0.75		2	4	6		Purge l	Method:	Micropur	ge				
F - Galloi	ns per foot of casi	ng	0.02	C).16	0.65	1.47	1	Well C	ondition:	1-000	1/20	Placed	(raske)-		
Time	Flow Controller Settings	Volu Puro (Lite	ged	Flow R (mL/mi	- 1	Water Level (ft-bmp)	Tempera (°C) [+/- 10°		(mS	uctivity S/cm) 10%]	Dissolv Oxyge (mg/L [+/- 10	ved en -)	pH [+/- 0.1 ph	ORP	Turbidity (NTU)] [+/- 10%]	Observations
	F	revious	Stabiliz	zed Para	meter	rs: 03-16-09	20.3	1	2	2.19	0.67		6.79	-75.00	7.60	
1306	SUPSE SUN/look	1.2	5	250		60.43	2201		2.0	5	0.9	5	6.62	-25,6		
1304		1.7	15			6844	22.01		2.0	7	0.8	7	6.68	-29.6		
1306		2.2	5	and the same of th		60.44	22.04		2.0	9	0.8	L	670	34.8		
1308	9	27	5	レ		60.44	220	5	2.0	9	0.70	4	6.70	- 35.	3.27	
iBro		3.25	-13~													
Purge Start Time	Purge End Time	Avera Flo (mL/n	w	Total Volum Purge (Liters	e d	Total Casing Volumes Purged	80% Red Lev (Dx	covery el Dept 0.20) +	th	Sampl	Level at ling Time		Sample Collection Time		Sample Ident	ification
1257	1308	250		2.70		N/A		NA		60	7.44		1309	IRZMW0	04_WG20100	3 2 3 _01
	s) [stabilization of					F	ield Paraı	neters	***************************************				DU	JP:		
Purging will	continue until thre measurements a		Ferrou	s Iron	(mg/L)	PID (pp			NN	Л		DRUM N	10:			

	TRONMEN IAL, IN		ility Sito	wido Annus	al Sampling, M	1ar-10		Date:				3/23	/ 2010		1(11440)
Project Nam Project No.:	e: Boeing	C-6 Fac		155.010	ar Samping, iv	iai-10		Prepar	red	bv:	170	215			
Well Identific	eation:			ZMW005				Weath		501		712			
	nt Point Descript	ion:		TOC			1	Pump			8		Screen:	65 - 90	
A	В		С		D = C - B	E	= B - A	<u> </u>	G			Н	I	J	K=HxI+J
Depth to LNA (ft-bmp)	Depth to St		Well To Depti	h	Water Columi Above Pump Intake(ft)	į Li	NAPL kness (f	ft)	Tub Diam (ir	neter	Vol	bing lume r/foot)	Tubing Length (feet)	Flow Cell Volume (Liters)	Initial Purge Volume (Liters)
pm	60.05		90	2	995	\sim	m		1/	/4	0.0	0054	77-5	0.8	1.25
				Gall	ons/Foot		Fiel	d Equipr	ment	t: YSI, Po	ortable	E Low-flow			
Well Dia	meter (inches) = 4		0.75	2	4	6	Pur	ge Metho	od:	Micropurg	e				
F - Gallor	ns per foot of casi	ng	0.02	0.16	0.65	1.47	Wel	I Condit	ion:	1-00	A	16-05	Ker 1ep	Tared	
Time	Flow Controller Settings	Volui Purg (Liter	ed	low Rate (mL/min)	Water Level (ft-bmp)	Temperatur (°C) [+/- 10%]		mductiv (mS/cm) [+/- 10%]	•	Dissolve Oxyger (mg/L) [+/- 10%	n	pH [+/- 0.1 pH]	ORP (mV) [+/- 10%]	Turbidity (NTU) [+/- 10%]	Observations
	F	Previous	Stabilized	d Paramete	rs: 03-16-09	19.15		1.79		0.460		6.83	-82.30	8.40	
1427	50PSE/50: 110 off	1.25	2	50	60.09	22,55		1.82		1.00)	6.76	-83.2		
1429		1.75			60.09	22.52	l,	<u>82 </u>		0.66		6.73	- 79.9		
1431		225			60.09	22.57		1.82		0.54	_	6.71	78.7		
1433		2.75	5		6009	22.52		1.82		0.51		6.71	-77.9		
1435 1435		3.29			60.09	2252		1.81		0.40		6.73	-78.0		
" 1447 H3	,	3.79	5		60.09	22.52		1.81		0.37		674	<u>-78.6</u>		
17/1494 143	Ÿ.	4,2			60.09	2252		1,81		0.37		6.76	- 79.1	7.39	
1441		4.7	5		60.09	22,47		1.81	-	6.35		6.78	- 80.4	7.22	
Purge Start Time	Purge End Time	Avera Flow (mL/m	v '	Total Volume Purged (Liters)	Total Casing Volumes Purged	80% Recov Level I (Dx0.20	Depth		ampli	Level at ing Time bmp)		Sample ollection Time		Sample Identi	
1422	1441	250	,	4.75	N/A	N	Ą		60.		esseries.	142		5_WG20100	3 <u>2</u> 3 <u>01</u>
Notes: (unit	s) [stabilization o	criteria]				ield Parame		ე. ა	2. (1	49/L)		DU			
	continue until thre measurements a criterion.			Ferrous Iron	(mg/L)	PID (ppm): Ö, H		ð	4			DRUM N	J .		

Project Nam	'IRONMENTAL, IN		ility Site	ewide Annua	al Sampling,	Mar-10		Tc	ate:			3/2	4 / 2010		
Project No.:	<u>. Doomig</u>	00.40		155.010	а. Сатъринд,				repared	by:	DN	l			
Well Identific	eation:			WC001					Veather:		مند ن	J Y			
	nt Point Descript	tion:	TOC					F	ump inta		0 3		Screen:	95 - 11	5
A	В		С		D = C - B		E = B -	A		G		Н	I	J	K = H x I + J
Depth to LNA (ft-bmp)	PL Depth to St Water Lev (ft-bmp)	1	Well To Dept (ft-bm)	h	Water Colum Above Pum Intake(ft)	. 1	LNAP hicknes		Dian	bing neter in)	V	ubing olume er/foot)	Tubing Length (feet)	Flow Cell Volume (Liters)	Initial Purge Volume (Liters)
NA	60.67		115		મંમ		NA		1	/4	0	.0054	110	0.75	i.4
<u> </u>				Galle	ons/Foot		F	ield E	Equipmen	t: YSI, P	ortab	le Low-flov	v		
Well Dia	imeter (inches) = 4		0.75	2	4	6	F	urge	Method:	Micropurg	ge				
F - Gallor	ns per foot of casi	ing	0.02	0.16	0.65	1.47	V	Vell C	ondition:						
Time	Flow Controller Settings	Volur Purg (Liter	ed F	Flow Rate (mL/min)	Water Level (ft-bmp)	Temper (°C [+/- 10)	(m	luctivity S/cm) - 10%]	Dissolv Oxyge (mg/L [+/- 109	en)	pH [+/- 0.1 pl-	ORP (mV) [+/- 10%	Turbidity (NTU) [+/- 10%]	Observations
	F	Previous :	Stabilize	d Paramete	rs: 03-12-09	22.5	6		1.34	4.410)	8.13	-1.00	53.00	
1517	82 psi	1.5		300	60.80	22.	03		.329	2.4		7.29		6	
1520	G2 psi	2-4		300	60.81	21.			370	2.3		7.45			
1523	82 psi	3.3		300	60.81	21.0	17		366	2.2		7.46	159.		
1526	82 psi 82 psi	4.2		300	60.91	21.0			363	2.3		7.46	159.9		
1529	82 vsi	5-1		300	60.81	21.0	13		364	2.3		7.46			
1532	82 psi	6.0		300	७०.५।	21.9	3	1.1	364 <u> </u>	2,41		7.46	159.9	54	
											7				
Purge Start Time	Purge End Time	Average Flow (mL/mi	,	Total Volume Purged (Liters)	Total Casing Volumes Purged		covery Vel Dept	h	Sampl	Level at ling Time	1	Sample collection Time		Sample Ident	ification
1512	î 539	300		6	N/A		NA		60	.61		1534		_WG201003 <i>1</i>	24_01
Notes: (unit	s) [stabilization o			•		Field Para	meters						JP:		
	continue until thre measurements a criterion			Ferrous Iron NM		PID (pr	om):		NN	Л		DRUM N	Ю:		

September 20	TRONMENTAL, IN											2106	/ / 2040		
Project Name	e: Boeing	C-6 Fa			al Sampling, M	1ar-10		Date:			. 0	316	/ / 2010		
Project No.:				155.010				Prepar			M				
Well Identific				VIW0005				Weath			YUK		Screen:	65 - 85	
Measuremen	t Point Descript	ion:	TOL					Pump		·	<u> 75</u>	- 3	ocreen:		
Α	В		С		D = C - B	E	= B - A		G	3	Н			J	K = H x I + J
Depth to LNA (ft-bmp)	PL Depth to St Water Lev (ft-bmp)		Well T Dep (ft-bn	th	Water Columi Above Pump Intake(ft)	L	NAPL kness ([Tub Diam (ir	neter	Tubing Volume (Liter/foo	•	Tubing Length (feet)	Flow Cell Volume (Liters)	Initial Purge Volume (Liters)
NA	59.06		8	5	16	l	JA		1/	/4	0.0054		80	0.75	1.2
				Gall	ons/Foot		Fiel	d Equipn	nent	t: YSI, Po	rtable Lo	w-flow			
Well Dia	imeter (inches) = 4		0.75	2	4	6	Pur	ge Metho	od:	Micropurge)				
F - Gallon	ns per foot of casi	ng	0.02	0.16	0.65	1.47	Wel	I Conditi	ion:	Go	00				
Time	Flow Controller Settings	Pui	ume rged ters)	Flow Rate (mL/min)	Water Level (ft-bmp)	Temperatur (°C) [+/- 10%]	re Co	nductivi (mS/cm) [+/- 10%]		Dissolve Oxyger (mg/L) [+/- 10%	[+/-	oH).1 pH]	ORP (mV) [+/- 10%]	Turbidity (NTU) [+/- 10%]	Observations
	F	reviou	s Stabiliz	ed Paramete	ers: 03-12-09	22.77		1.63		3.300		.91	-23.00	15.40	
1401	57 Mi	i.	2	300	59.06	22,81		1.379	1	3.47	7	36	142.7	1000	
1404	57 psi	2.		300	59.06	22.65		1.327	1	4.46		43	139.9	50	
1407	57 psi	3.0	0	300	59.06	22.60		1.249		4.80		47	139.1	58	
1410	57 psi	3.4		300	59.06	22.64		1,177		5.30	7.	51	139,4	66	
1413	57051	4.4	8	300	59.06	22.64		1.149		5.24		53	139.8	62	_
1416	57 psi	5.	7	300	59.06	22.62	. 1	. 150		5.30		55	140.3	ે 5	
1414	57 psi	6.6	j j	300	59.06	22-65		.152	_	5.27	17	. 56	141.0	61	
Purge Start Time	Purge End Time	Flo	rage ow min)	Total Volume Purged (Liters)	Total Casing Volumes Purged	80% Recov Level I (Dx0.2	Depth	Sa	ımpli (ft l	Level at ing Time bmp)	Sam Collec Tim	tion e		Sample Identi	
i357	1435	300	3	7	N/A	N.	Α	B/2	5 :	59.06	142			WG201003	<u>24 _01</u>
Notes: (unit	s) [stabilization o	criteria]		F	ield Parame	ters					DU			
Purging will	continue until thre measurements a	ee	70000	Ferrous Iron		PID (ppm):			NM	/	DRI	JM NO	J:	. 11/2	

Project Nam	e: Boeing		cility. S	itewide Annı	ual Sampling	. Mar-	10		Date:			3/2	3 / 2010		
Project No.:				1155.010		,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	. •		Prepared	i by:	Dm		3 / 2010		
Well Identific	cation:			MWB003		····			Weather		<u> ۲</u> ۲۷				
Measuremer	nt Point Descrip	tion:	700,	N					Pump In		7 7		Screen:	65 - 90	
A	В		C	;	D = C - B	!	E=	B - A		G		Н		J	K=HxI+J
Depth to LNA (ft-bmp)	PL Depth to S Water Le (ft-bmp)	vel	Well Dep	oth	Water Colu Above Pur Intake(ft)	np	LN Thick	APL ness (f	_{ft\} Dia	bing meter (in)	Vol	bing ume r/foot)	Tubing Length (feet)	Flow Cell Volume (Liters)	Initial Purge Volume (Liters)
NA	63.67	-	9	0	13		2	A		1/4	0.0	054	85	0.75	1.2
				Gal	lons/Foot			Field	d Equipme	nt: YSI, Po	ortable	Low-flow			
Well Dia	imeter (inches) = 2		0.75	2	4		6	Purg	ge Method:	Micropurg	e				
F - Galloi	ns per foot of cas	ing	0.02	0.16	0.65		1.47	Well	I Condition						
Time	Flow Controller Settings	Volu Purç (Lite	ged	Flow Rate (mL/min)	Water Level (ft-bmp)		mperature (°C) [+/- 10%]		nductivity (mS/cm) [+/- 10%]	Dissolve Oxyge (mg/L) [+/- 10%	n	pH [+/- 0.1 pH]	ORP (mV) [+/- 10%]	Turbidity (NTU) [+/- 10%]	Observations
		revious	Stabiliz	ed Paramete	ers: 03-16 - 09	9	22.91		1.99	4.800		7.04	36.00	20.60	
1430	66 psi	1,40	د ا	35°C	63.62	.,	22.05	,	2.155	3.93		7.18	132.9	>1000	
1433	ble psi	2,4	10	350	63.62	2	2.02	4	2.150	3.84	1	7.18	133.9	>(000	
1436	ble psi	3.5		350	63.62		22.04		2.144	3.73		7.18	135.5	>1000	
1439	be psi	4,5		350	63.62		2.09	2	13 i	3.77		7.18	136.4	> 1000	
1442	66 psi	5.6		350	63.62		2.07	2	-107	3-48	9	7.18	137.7	729	
1445	lele josi	6-6		350	63.62		2.06		.100	3.44		7-16	138.1	615	
1448	66 pci			350	63.62		2.06		-082	3.42	•	7.17	139.6	542	
1451	GG psi	8.8		350	63.62	27	4.05	2	.076	3.29		7.16	140.4	509	
1454	66 6 psi	9.9	0	350	63.62	2:	2.06	2.	071	3.24	-	7.17	141.0	497	
Purge Start Time	Purge End Time	Avera Flow (mL/m	w	Total Volume Purged (Liters)	Total Casing Volumes Purged	80%	Recover Level De (Dx0.20)	pth	Samp	Level at ling Time bmp)	Col	ample Ilection Time	\$	Sample Identif	ication
1426		350	>		N/A		NA				7	457	MWB003_	WG201003 2	23 _01
	s) [stabilization c					Field	Paramete	rs				DUF			
	ontinue until thre measurements al criterion		n	Ferrous Iron		PI	D (ppm):		CHEMet 3 m			RUM NO) :		

	TROTTINE, III																	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Project Nam	e: Boeing	C-6 Facility	, Sitewide /	\nnua	l Sampling, N	/lar-10			Da	te:				5 / 2010				
Project No.:			1155.0	0					Pre	epared	by:	$\mathcal{D}_{\mathcal{M}}$						
Well Identific	cation:		MWB00)6					We	eather:		Part	lylMost	y Clos	rdy	war-	2	
Measuremer	nt Point Descript	tion:	TOC	-1					Pu	mp Inta	ake: 7	7.5		Screen:		65 - 90		
А	В		С		D = C - B		E=	- B - A		(G		Н	I		J	K = H	x I + J
Depth to LNA (ft-bmp)	PL Depth to St Water Lev (ft-bmp)	rel	ell Total Depth ft-bmp)	1	Vater Columi Above Pump Intake(ft)			IAPL ness (ft)	Dian	neter	Vol	bing lume er/foot)	Tubing Length (feet)	Vo	w Cell lume iters)		tial Volume ^{ers)}
NM	60.32	2 9	0		17.2		N_{i}	A		1	/4	0.0	0054	80'	<i>y</i>	75	173	2
				Gallo	ns/Foot			Fiel	d Eq	uipmen	t: YSI, D	edicat	ed Low-flo	w				
Well Dia	ameter (inches) = 2	0	75	2	4		6	Pur	ge M	ethod:	Micropurg	je						
F - Galloi	ns per foot of casi	ng 0	.02	.16	0.65	1	.47	Wel	I Co	ndition:								
Time	Flow Controller Settings	Volume Purged (Liters)	Flow R (mL/m		Water Level (ft-bmp)		perature (°C) /- 10%]		ondu (mS/ [+/- 1		Dissolv Oxyge (mg/L) [+/- 10%	n	pH [+/- 0.1 pH]	ORP (mV) [+/- 109		urbidity (NTU) [+/- 10%]	Obsei	vations
	F	Previous Sta	bilized Para	meter	s: 09-10-09	2	23.81		7.8	33	0.450		5.65	-161.0	0	4.96		
12:05	45 ps= 11/9	1,2	200	7	60.45	22	-76	8	1.0	3	0,17	-	5.92	-111	72	2,18		
12:08	ì	1.8	200		60.52	22	.85		2,0		19.13	7	5.91	-114	0	1.97		
12:11		2.4	200		60,71	22	.87	8	1.0	2	0.17		5.91	-116		76		
12:14		2.0	200		60.85		1,94		7.0		0.13		5.90	- 118		.60		
12:17		3,6	200		61.02	Z 2	.94	5	800	(0.12	-	5.91	-119	O	174		
			4															
Purge Start Time	Purge End Time	Average Flow (mL/min)	Total Volum Purge (Liters	e d	Total Casing Volumes Purged		Recove Level D (Dx0.20)	epth) + B	ter	Sampl (ft	Level at ing Time	Co	Sample ollection Time		_	ple Identit		
12:00	12:17	Z00	3,6		N/A		NA			(Ella	18 61.02	12	2:18		6_WG	201003 <i>2</i>	5 _0	1
Purging will o	s) [stabilization continue until thre measurements a criterion	ee	Ferrou	s Iron ((mg/L)	PID	aramete (ppm):	ers		NN	/		DU DRUM NO					*

Project Nam	e: Boeing	C-6 Fa	cility, S	itewide	Annu	al Sampling, l	Mar-1	0		Da	ate:			3/2	<u> 5 / 2010</u>		
Project No.:		,		1155.0	010					Pr	epared	by:	C	m			
Well Identific	cation:			MWB	007					W	eather:		SV	NINY			
Measuremer	nt Point Descript	tion:	TOC	, N						Pı	ımp Inta	ake:	*2	75	Screen:	60 - 90	
Α	В		C	2		D = C - B		E	= B - A			G		Н	l	J	$K = H \times I + J$
Depth to LNA (ft-bmp)	PL Depth to St Water Lev (ft-bmp)	/el	Well Dej (ft-b			Water Colum Above Pum _l Intake(ft)			NAPL (ness	(ft)	Dian	oing neter n)	1	Tubing /olume .iter/foot)	Tubing Length (feet)	Flow Cell Volume (Liters)	Initial Purge Volume (Liters)
NA	57.70	5	90)				N	A		1	/4		0.0054	क्षर	6.75	1-2
					Gall	ons/Foot	360		Fie	ld E	quipmen	t: YSI,	Dedic	cated Low-fl	low		
Well Dia	ameter (inches) = 4		0.75		2	4		6	Pu	rge N	/lethod:	Micropu	ırge				
F - Galloi	ns per foot of casi	ing	0.02		0.16	0.65		1.47	We	ell Co	ndition:		٩٥	00			
Time	Flow Controller Settings	Volu Pur	ged	Flow (mL/r		Water Level (ft-bmp)		mperatur (°C) [+/- 10%]	еС	(mS	uctivity 5/cm) 10%]	Disso Oxyg (mg [+/- 1	gen /L)	pH [+/- 0.1 pH	ORP (mV) [+/- 10%]	Turbidity (NTU) [+/- 10%]	Observations
	F	Previous	Stabiliz	zed Pa	amete	rs: 09-11-09		23.76		1.	82	3.6		7.03	46.00	5.70	
1532	63 psi	19.4	4	350	<u>گ</u>	57.70	2	4.93		2.	007	3.7		7.36	99.5	3	
1585	63 psi	2.5	5	350	>	57.70	2	1.67			109	3.1		7.37	101.4		
1538	63 psi	3.5	5	350)	57.70	2	1.89		2.	006	3.1		7.37	104.0		
1541	63 psi	4.1	Č	350	>	57.70	2	1.85			רטכ	3.	0	7.37	104.		
1544	63 psi	5.5	(s)	35	Ć	57.70	2	1-86	-	2.0	<i>ज्ञ</i>	3.1	ユ	7.37	104.0	3	
		Avera	age	Tot		Total	80	% Recov	ery W	ater		Level a	- 1	Sample			
Purge Start Time	Purge End Time	Flo (mL/n	min)	Volu Purg (Lite	rs)	Casing Volumes Purged		Level [(Dx0.20	epth) + B		(ft	ing Tim bmp)	e	Collection Time		Sample Identi	
1528		35	٥	<u> </u>	<u> </u>	N/A		N/		····	57	.70		1545		_WG201003	<u> 25 _01 </u>
Notes: (unit	s) [stabilization o		Same				200020000000000	Paramet	ers						JP:		
	continue until thre measurements a criterion		in	Ferro	ous Iron NM	(mg/L)	P	PID (ppm):			NN	Λ		DRUM N	4 ∪:		

Project Nam	VIRONMENTAL, IN		cility S	Sitewi	ide Annu	al Sampling, I	Mar-1	10		Da	ite:	<u> </u>		3/4	-ેલ/ 2010		
Project No.:	o. Boomig	, 0 0 1 0	ionity, c		5.010	a, camping,				-	epared	bv:	DN		· · · ·		
Well Identific	cation:				B012						eather:	_	در زر ر				
Measuremei	nt Point Descrip	tion:	70)C 1	7	1 1 111 111 111				Pu	ımp İnta		75		Screen:	64.5 - 84	.5
A	В			С		D = C - B	****	E	= B - A	*		G		Н	I	J	K = H x I + J
Depth to LNA (ft-bmp)	PL Depth to St Water Lev (ft-bmp)	/el		Tota epth omp)		Water Colum Above Pump Intake(ft)			NAPL kness	(ft)	Dian	oing neter n)	V	ubing olume ter/foot)	Tubing Length (feet)	Flow Cell Volume (Liters)	Initial Purge Volume (Liters)
NA	59.52		8	4.5		15		İ	JA		1	/4	0	.0054	80	0.75	1.2
					Gall	ons/Foot			Fie	ld Ec	uipmen	t: YSI, F	ortab	ole Low-flow	/		
Well Dia	ameter (inches) = 4		0.75	5	2	4		6	Pui	ge N	lethod:	Micropur	ge				
F - Gallo	ns per foot of cas	ing	0.02	2	0.16	0.65		1.47	We	II Co	ndition:	Goo	O				
Time	Flow Controller Settings	Volu Pur (Lite			w Rate L/min)	Water Level (ft-bmp)		mperatur (°C) [+/- 10%]	e Co	ondu (mS,	ctivity (cm) 10%]	Dissolv Oxyge (mg/L [+/- 10°	en .)	pH [+/- 0.1 pH]	ORP (mV) [+/- 10%]	Turbidity (NTU) [+/- 10%]	Observations
	F	revious	Stabili	zed F	Paramete	rs: 03-10-09		22.73		1.3	35	8.010		7.37	22.00	48.40	
1149	60 psi	1.:	3	3	25	54.57		22.49	7	7		4.5		7.78	112.5		
1152	60 psi	2.	.3		25	54.58	6	22.47		7		4.6	2	7.72		4	
1155	60 psi	3.	3		25	59.56		22.44		1.7		4.6		7.76	113.3		
1158	60 ps.	મં.'			25	59.56		12.44		1.7		² 4 ، ان		7.80	113.9	5	
1201	60 psi	5 ?		30		59.57		2.43			48	4.6	0	7.85	114.1	4	
1204	60 ps;	61	2	30	25	59.56	2	2.41		(- 7	પવ	4.60	6	7.87	115.3	4	
Purge Start	Purge End	Avera	_	-	otal Iume	Total Casing	809	% Recov		iter		Level at		Sample		Completed and	
Time	Time	Flo (mL/n	min)	Pu (L	i rged iters)	Volumes Purged		Level C (Dx0.20)) + B		(ft	ing Time bmp)	C	Collection Time		Sample Identi	
1145_	1207	3V		<u></u>	.5	N/A	<u> </u>	N/			<u>5</u> 6	1.56		1205		_WG201003	<u> 24 _01</u>
Purging will o	s) [stabilization occurrinue until thre measurements a criterion.	Î	Fe	rrous Iron NM	(mg/L)	P	Paramet	ers		NN	1		DU DRUM NO				

	IRONMENTAL, IN		- :::: 0	N	- A ·	-1 C	A 10			Da	4 0.	X-1-		21*	L'C/ 2010	<u> </u>		
Project Nam	e: Boeing	U-6 Fa		1155.		al Sampling, N	nar-10				te: epared	by:	- 100		<u> </u>			
Project No.:	••									-	eather:		01					
Well Identific				MWB					<u></u>	 	mp Inta		ورز ز 75		Screen:		65 - 85	
	nt Point Descript	ion:	22001111111	<u> </u>	T		ſ			Pu	····		13		Screen.	-T		1/ - 11 - 1 1
A	В			<u> </u>		D = C - B		E =	B - A			G		Н		_	J	K = H x I + J
Depth to LNA (ft-bmp)	PL Depth to St Water Lev (ft-bmp)		De	Total pth pmp)		Water Colum Above Pump Intake(ft)		LN Thick	APL ness (ft)	Dian	oing neter n)	V	Tubing Yolume iter/foot)	Tubing Length (feet)		Flow Cell Volume (Liters)	Initial Purge Volume (Liters)
NA	61.87		Ŷ	55		13		1	iA		1	/4	(0.0054	80		0.75	1.2
					Gall	ons/Foot			Fiel	d Eq	uipmen	t: YSI, [Dedic	cated Low-fl	ow			
Well Dia	imeter (inches) = 4		0.75		2	4		6	Pur	ge M	ethod:	Micropur	ge					
F - Gallo	ns per foot of casi	ng	0.02		0.16	0.65	1.	47	Wel	I Co	ndition:							
Time	Flow Controller Settings	Pur	ume rged ters)		Rate /min)	Water Level (ft-bmp)	-	erature (°C) - 10%]		ondu (mS/ [+/- 1		Dissol Oxyg (mg/l [+/- 10	en _)	pH [+/- 0.1 pH	ORI (mV [+/- 10	')	Turbidity (NTU) [+/- 10%]	Observations
	F	reviou	s Stabiliz	zed Pa	aramete	ers: 09-09-09	2	3.15		1.5	51	6.04	0	8.75	13.0		1.14	
0818	65 psi	1.	2	40	, 0	61.96	21	1.27		1.7	29	5.2°	Ì	6.69			4	
0821	65051	2.	. 4	40	0	61.98	21	.49	ĺ	้.า3	7	5.51		6.87	48.		3	
0624	65 /05	3.		40	0	61.98	21.	54		. 7 :		5.40		6-84			2	
0827	65 ps:	Ч.	4	40	0	61.98	21.	54	1	.73	3 B	5-3		6-87	58.		3	
0630	65 rs?	6		40	<u>e</u>	61.98	21.	53	-	. 7	36 <u> </u>	5.4	7.00	6.89	64.		2	
0933	65 psi	7.	2	40	Ĉ	61.98	21.	52	ĺ	. 7:	36e	5.4	0	6.90	66:	7_	2	
Purge Start Time	Purge End Time	Aver Flo (mL/s	ow	To Volu Pur	ıme ged	Total Casing Volumes Purged	I	Recove Level Do (Dx0.20)	epth	ter	Sampl	Level at ing Time bmp)	. (Sample Collection Time			i Sample Identif	
6815	0848	40	0 (7	.5	N/A		NA			Ci	. ૧ ર્ષ		O 838	MWB0	13_\	WG201003	26_01
		riteria]	······································		F	ield Pa	aramete	ers						JP:			
Purging will consecutive	Ites: (units) [stabilization criteria] rging will continue until three nsecutive measurements are within bilization criterion.			Ferr	ous Iron NM			(ppm):			NN	Λ		DRUM N	IO:			

Project Nam	e: Boeing	C-6 Fac	cility, Site	ewide Annu	al Sampling, N	/lar-10		Date:				3/2	식/ 2010		
Project No.:			1	155.010				Prepa	ared l	oy:	DM				
Well Identifi	cation:		M	WB014				Weatl	her:	SV	アンバン				
Measureme	nt Point Descrip	tion:	TOL ,	N				Pump	o Inta	ke: 7	5		Screen:	65 - 85	
Α	В		С		D = C - B	E	= B - A		G	;	Н			J	$K = H \times I + J$
Depth to LNA (ft-bmp)	Depth to St Water Lev (ft-bmp)	/el	Well To Dept (ft-bm)	h	Water Colum Above Pump Intake(ft)	. L	NAPL kness (ft)	Tub Diam (ir	eter	Tubing Volume (Liter/foo		Tubing Length (feet)	Flow Cell Volume (Liters)	Initial Purge Volume (Liters)
NΑ	Pras 59	1.95	85		ile	P	JA		1/-	4	0.0054		85	0.75	1.2
				Gall	ons/Foot	•	Fiel	d Equip	ment	: YSI, Po	rtable Lov	v-flow			
Well Dia	ameter (inches) = 4		0.75	2	4	6	Pur	ge Meth	rod: I	Micropurge	9				
F - Gallo	ns per foot of casi	ing	0.02	0.16	0.65	1.47	Wel	I Condi	tion:	٩٥	00				
Time	Flow Controller Settings	Volu Purg (Lite	ged F	Flow Rate (mL/min)	Water Level (ft-bmp)	Temperatur (°C) [+/- 10%]		nductiv (mS/cm) [+/- 10%])	Oxyger (mg/L) [+/- 10%	1 F [+/- 0	H .1 pH]	ORP (mV) [+/- 10%]	Turbidity (NTU) [+/- 10%]	Observations
	F	revious	Stabilize	d Paramete	ers: 03-10-09	21.59		1.28		3.940		12		54.00	
8096	53 ps 1	1.2	~	300	59.03	20.99		1,250	٥	371	7.	58	202.1	35	
0911	53 p5.	2:1	l	300	59.02	21.06	1	1.261	1	3.82		57	202.0	15	
1100	53 psi	3.5		300	59.02	21.08		274	-	3.69			2021	9	
0917	53 251	3.9	ì	300	59.02	21 11		. 294		3.77	7.		202.4	원	
0920	53 041			300	59.03	21.18		-315		3.75	7.		202.9	(b)	
0923	53 797	5.	1	30°	59.03	21.17	ĺ	.319		3.80	7.	2_	202.8	5	
				11,110,000											
Purge Start Time	Purge End Time	Avera Flov (mL/m	v	Total Volume Purged (Liters)	Total Casing Volumes Purged	80% Recov Level I (Dx0.20	Depth		amplii	Level at ng Time omp)	Samp Collect Time	ion		Sample Identi	
7904	0935	Zo	0	Ç	N/A	N/	4		59	رد.	092			WG201003	2닉 _01
	s) [stabilization o				F	ield Paramet	ers					DUI			
	continue until thre measurements a criterion			Ferrous Iron		PID (ppm):			NM	· —	DRU	M NC	D:		

	'IRONMENTAL, IN										·				<u> </u>			
Project Name	e: Boeing	C-6 Fa	acility, S			al Sampling, N	/lar-1	10			ite:				- 0 / 2010			
Project No.:					5.010						epared	by:		<u> </u>	1 2.			
Well Identific					B019						eather:			SUANI				
Measuremen	t Point Descript	ion:			UC	·		r			mp Inta		75	<u>`</u>	Screen:		65 - 85	
Α	В			C		D = C - B		E:	= B - A	4	(3		Н			J	K=HxI+J
Depth to LNA (ft-bmp)	PL Depth to St Water Lev (ft-bmp)		De	Tota pth bmp)		Water Colum Above Pump Intake(ft)		LN Thick	NAPL		Dian	oing neter n)	V	Tubing Yolume iter/foot)	Tubing Length (feet)	V	ow Cell /olume Liters)	Initial Purge Volume (Liters)
NM	62.72		90	0.5		NM		27.7	18		1	/4	C	0.0054	75'	C	7-8	1.21
	·				Gall	ons/Foot			Fi	eld Ec	luipmen	t: YSI, [Dedic	ated Low-flo	ow			
Well Dia	meter (inches) = 4		0.75	5	2	4		6 🐔	P	urge N	lethod:	Micropur	ge					
F - Gallor	ns per foot of casi	ng	0.02	2	0.16	0.65		1.47	W	ell Co	ndition:	600	d					
Time	Flow Controller Settings	Pur	ume rged ters)		w Rate	Water Level (ft-bmp)		mperatur (°C) [+/- 10%]	e (Condu (mS.		Dissol Oxyg (mg/l [+/- 10	en _)	pH [+/- 0.1 pH	ORP (mV) [+/- 10%	6]	Turbidity (NTU) [+/- 10%]	Observations
	F	revious	s Stabili	zed F	Paramete	rs: 09-11-09		22.20		3.0	00	4.36		6.75	120.00		1.07	
1028	50 Pat 150 : 1100 FC	1.7	<u> </u>	7	50	62.75	7	1.69		2.7	7	Ş√S		6.50	1 -53.3		0.97	
1030	-	1.7	5			6278	2	1.98			87	5.0	2	6.56	-50-	2	0.84	
1032	and the second s	2.7	3			62.79		2229			94	4.7	7	6.58	-47.1	1	0.55	
1 4334	· ·	2.7	75			62.79	2	2,44			97	4.7	7	6.59	-45!	9	12.63	
/0) b	<u> </u>	3.	35	(6279	d	22.45		2.	98	4.8	l	6.63	- 45	3	0-52	
Purge Start Time	Purge End Time	Aver Flo	ow	Vo Pu	otal lume irged	Total Casing Volumes Purged	80%	% Recove Level D (Dx0.20	epth		Sampl	Level at ing Time bmp)		Sample Collection Time		San	nple Identii	fication
/073	1036	25	0	3.	25	N/A	***************************************	NA	`		6	2.79		1037	MWB01	9_W(G201003	2 6 _01
	<u> </u>	riteria]				F	ield	Paramete	ers					DL	JP:		,	
Purging will consecutive r	otes: (units) [stabilization criteria] arging will continue until three ansecutive measurements are within abilization criterion.				rrous Iron NM		Р	ID (ppm):			NN	1		DRUM N	O:			

Project Name Project No.: Well Identific Measuremen					al Sampling, N	viar-10		Date:				316	5 / 2010		
Well Identific			115	5.010				Prepa	red	by: 🐧	m				
Measuremen	ation:	21	MV	/B020				Weath	her:	-gr	4 5UA	NY			
	t Point Descript	ion:	TOO,	, i				Pump	Inta	ıke: =	15	,	Screen:	59.5 - 89	.5
Α	В		С		D = C - B	E	= B - A		G	€	Н		1	J	$K = H \times I + J$
Depth to LNAI (ft-bmp)	PL Depth to St Water Lev (ft-bmp)		Vell Tota Depth (ft-bmp)		Water Colum Above Pump Intake(ft)	. L	NAPL kness (f	t)	Tub Diam (ir	neter	Tubing Volume (Liter/foo		Tubing Length (feet)	Flow Cell Volume (Liters)	Initial Purge Volume (Liters)
NA	56.91	٥	89.5		18	į.	βUA		1/	/4	0.0054		80	0.75	1.2
				Gall	ons/Foot		Field	d Equip	ment	:: YSI, De	edicated L	ow-flo	w		
Well Dia	meter (inches) = 4	(0.75	2	4	6	Purg	ge Meth	od:	Micropurg	e				
F - Gallon	s per foot of casi	ng (0.02	0.16	0.65	1.47	Well	l Condit	tion:	GOOD					
Time	Flow Controller Settings	Volume Purged (Liters)		ow Rate nL/min)	Water Level (ft-bmp)	Temperatu (°C) [+/- 10%]		nductiv (mS/cm) [+/- 10%]	-	Oxyger (mg/L) [+/- 10%	n [+/-	oH).1 pH]	ORP (mV) [+/- 10%]	Turbidity (NTU) [+/- 10%]	Observations
	Р	revious St	abilized	Paramete	rs: 09-11-09	21.86		2.05		3.880		.78	121.00	0.63	
1002	50 ps.	1.3	2	. 5 0	57.03	21.08		1.919	1	3.64	•	.15	209.4		
1005	50 psi	2.0	6	250	57.06	21.14		1.893		3.36		.15	209.2		
1009	50 psi	2.8	2	50	57.07	21.13		<u>. 895</u>		3.31		14	209.4		
(0)(50 psi	3.5		250	57.07	21.20		-482		3.25		16	209.2		
1014	50 psi	4.3		250	\$7.07	21.23	Change	. 883		3.31	7	.15	204.2	3	
Purge Start Time	Purge End Time	Average Flow (mL/min)	Vo Po	otal blume urged .iters)	Total Casing Volumes Purged	80% Recov Level I	Depth		ampli	Level at ng Time omp)	Samp Collec Tim	tion		Sample Identi	fication
୦୯ଟ	1016	250		5	N/A	N/	Α	- 6	57.	C 7	101			WG201003	25 _01
Purging will c	s) [stabilization continue until thre	e	F	errous Iron	(mg/L)	Field Paramer PID (ppm):	ALPERENT CONTROL TRANSPORTER CONTROL		NM	1	DRU	DUI M NO		-	

Project Name	Boeing		acility, S	Sitew	ide Annua	al Sampling, N	1ar-10			Da	te:			3/2	5 / 2010		
Project No.:					5.010					Pre	pared	by:		Bens.			
Well Identific	ation:			MW	B027					We	eather:		(lo	ody			
Measuremen	t Point Descript	ion:		TO	C					Pu	mp Inta	ake: 🤟	7. S		Screen:	67.5 - 87	'. 5
А	В	***************************************		С		D = C - B		E=	B - A		(3		Н		J	$K = H \times I + J$
Depth to LNAI (ft-bmp)	Depth to St. Water Lev			Tota pth bmp)		Water Colum Above Pump Intake(ft)	- 1	LN Thick	APL ness	(ft)	Dian	oing neter	V	ubing olume ter/foot)	Tubing Length (feet)	Flow Cell Volume (Liters)	Initial Purge Volume (Liters)
مم نسر	63.65		91	,5		27.85		No	7		1,	/4	C	0.0054	77.5	0.8	7.55
					Gall	ons/Foot			Fie	ld Eq	uipmen	t: YSI, E	edic	ated Low-flo	ow .		
Well Dia	meter (inches) = 2		0.75	5	2	4		3	Pur	ge M	ethod:	Micropur	ge				
F - Gallon	s per foot of casi	ng	0.02	2	0.16	0.65	1.	47	We	II Co	ndition:	1-00	cl				
Time	Flow Controller Settings	Pι	lume irged iters)		w Rate	Water Level (ft-bmp)		erature °C) 10%]	C	ondu (mS/ [+/- 1		Dissolv Oxyge (mg/L [+/- 10°	/ed en .)	pH [+/- 0.1 pH]	ORP (mV) [+/- 10%]	Turbidity (NTU) [+/- 10%]	Observations
	P	reviou	us Stabili	ized l	Paramete	rs: 09-11-09	2	2.24		2.1	1	3.720		7.03	8.00	6.01	
1132 5	50851/500 Noch-	1.	25	7	sυ	63.68	21.	44	-	2.04	ę	5.56		6.85	-70.5		
1134		1	75			63.70	21		1	2.0		4.6		6.78	-15.9	7.67	
136	ATTENDO NATIONAL	2.	25			63.72		48	4	Z. 0	7	3.9		6.76	- 13-1	7-58	
1138	o property of the state of the	2	75			63.72		55		2.0		3.87	>	6.75	-126		
1140	WYYTZ-900 jillen		2.2		· diliving	63.72	21.	68	4	20	7	3.81		6.74	-101	4.22	
1142	, .	3	75		envelopmen.	63.72	21.			2.0	ઝ	3.74		6.73	- 9.3	4.00	
1144	y	Ч	.75		J/	63.72	21.	68		2.0	8	3.78		6.73	- 9.2	3.86	
					otal	T-/ 1				T			<u> </u>				
Purge Start Time	Time Time Flow (mL/mi					Total Casing Volumes Purged	L	Recove Level D (Dx0.20)	epth	ater	Sampli	Level at ing Time bmp)		Sample Collection Time		Sample Identi	
1/27	1144	J.	; O	ч	.25	N/A		NA			63.	72		1145	MWB027	_WG201003	25_01
		riteria	a]			F	ield Pa	aramete	ers					DU			
Purging will c	tes: (units) [stabilization criteria] rging will continue until three ascurements are within bilization criterion.				errous Iron NM			(ppm):			NN	1		DRUM N	O:		

Project Nam	e: Boeing	C-6 F	acility,	Sitew	ide Annu	al Sampling, I	Mar-10	0		Date):			3/2	-3 / 2010		
Project No.:				115	5.010		******			Prep	ared	by: 🛭	m				
Well Identifi	cation:			MW	/B028					Wea	ther:	Svi	úμ,	Ý			
Measureme	nt Point Descript	ion:	TOC	نی .						Pum	ıp Inta	ke:	78		Screen:	65 - 90	i
Α	В			С		D = C - B		E=	B - A		(3		Н	NA COLOR	J	K = H x I + J
Depth to LNA (ft-bmp)	PL Depth to St Water Lev (ft-bmp)			Tota pth bmp)	ıl '	Water Colum Above Pump Intake(ft)		ì	IAPL ness (ft)	Tub Dian (ir	neter	V	ubing olume er/foot)	Tubing Length (feet)	Flow Cell Volume (Liters)	Initial Purge Volume (Liters)
AU	63.56		9	0		14		۲	A		1,	/4	0	.0054	90	0.75	i · 23
				***************************************	Gall	ons/Foot			Fiel	d Equi	ipment	t: YSI, P	ortab	le Low-flow	1		
Well Dia	ameter (inches) = 2		0.75	5	2	4		6	Pur	ge Met	thod:	Micropurg	ge				
F - Gallo	ns per foot of casi	ng	0.02	2	0.16	0.65		1.47	Wel	ll Cond	lition:	G00	D				
Time	Flow Controller Settings	Pu	lume irged iters)	i	w Rate nL/min)	Water Level (ft-bmp)		nperature (°C) +/- 10%]		onduct (mS/cm [+/- 10%	n)	Dissolv Oxyge (mg/L [+/- 10%	en)	pH [+/- 0.1 pH	ORP (mV) [+/- 10%]	Turbidity (NTU) [+/- 10%]	Observations
	F	reviou	ıs Stabil	ized I	Paramete	ers: 03-12-09		23.07		1.53		6.690		7.92	-68.00	2.59	
0914	56 psi	15	375	2	75	63.58	2	1.61		1.55	5	4.4	5	7.15	210.0	679	
0917	56 PS	2	.2		.75	63.54	2	1.71		1.46		4.57		7.31	209.3	636	
0920	56 psi		, 200		೦೦	63.59		1.68		1. 4		4.4		7.24	209.3	535	
0923	56 psi		. 4	3	25	63.59	2	96.1.		1.45)	4.5		7.23	204.3		
0926	56 ps'1		.0	3	00	63.59	21	174		1.45		4.50		7.24	204.6		
0929	st psi	5	.9	3	00	63.58	21	(1)	1	, 44	4	4.5	7	7.24	209.6	490	
Purge Start Time	Purge End Time	FI	rage ow /min)	Vc Pu	otal lume irged iters)	Total Casing Volumes Purged	80%	Recove	epth		Sampli	Level at ing Time	1	Sample collection Time		Sample Identif	fication
<u> </u>	0930	30	0,0		6	N/A		NA			63	28	10	⁷ 930	MWB028	_WG201003 2	23 _01
Notes: (unit	s) [stabilization c		<u>a]</u>			•	ield F	Paramete	ers					DU			
	continue until thre measurements au criterion.	hin	Fe	rrous Iron NM			D (ppm):			NN	1		DRUM N	O:			

20022000	IRONMENTAL, IN							1							
Project Nam	e: Boeing	C-6 Fac			al Sampling, N	/lar-10		Date					15/2010		
Project No.:				55.010				<u> </u>	ared		26				
Well Identific	cation:		MV	VC004				Wea			NN				
Measuremer	nt Point Descript	tion:	TOC.	N				Pum	ip Inta	ake:	100	6	Screen:	96 - 11	6
Α	В		С		D = C - B	E	= B - A		(3		Н		J	K=HxI+J
Depth to LNA (ft-bmp)	PL Depth to St Water Lev (ft-bmp)		Well Tot Depth (ft-bmp		Water Colum Above Pump Intake(ft)	L	NAPL kness (1	ft)	Dian	oing neter n)	V	ubing olume er/foot)	Tubing Length (feet)	Flow Cell Volume (Liters)	Initial Purge Volume (Liters)
NA	58.5	3	(16		47	į	JA		1.	/4	0	.0054	115	0.75	1.4
				Gall	ons/Foot		Fiel	d Equi	ipmen	t: YSI, E	Dedica	ated Low-fl	ow		
Well Dia	imeter (inches) = 4		0.75	2	4	6	Pur	ge Met	thod:	Micropur	ge				
F - Gallo	ns per foot of casi	ng	0.02	0.16	0.65	1.47	Wel	I Cond	dition:	*	doc				
Time	Flow Controller Settings	Volur Purge (Liter	ed FI	ow Rate mL/min)	Water Level (ft-bmp)	Temperatu (°C) [+/- 10%]		nduct (mS/cm [+/- 10%	n)	Dissolv Oxyge (mg/L [+/- 10	en .)	pH [+/- 0.1 pH	ORP (mV) [+/- 10%]	Turbidity (NTU) [+/- 10%]	Observations
	F	revious 9	Stabilized	Paramete	ers: 09-10-09	22.64		0.79		0.440		9.60	-247.00		
1238	78 psi	1.5		300	58.80	22.04		0.85	· (0.9	3	7.70	183.6	· 4	
1241	78 psi	2.4	1	300	5876	22.16	1	2.88	4	0.6	ĺ	7.67	1 182:		
1244	78 PSi	3.3		300	58.78	22.24) . 88		0.6		7.6			
1247	78 /5:	4.2		300	58.79	22.30	0	. 88	4	0.6		7.66			
1250	78 251	5.1		300	58.78	22.25		.88		0.6		7.67			
1253	78 ps.	6.0	<u> </u>	300	58.79	22,28	0	. 6 8 3	3	0.59	3	7.67	179.2	3	
Purge Start Time	Purge End Time	Averag Flow (mL/mi	ge V	Total olume urged (Liters)	Total Casing Volumes Purged	80% Recov Level I (Dx0.20	Depth	\$	Sampl (ft	Level at ing Time bmp)	0	Sample Collection Time		Sample Identi	
1233	1315	300		٧	N/A	N/	4		58.	79		255		_WG201003	25 _01
Notes: (unit	s) [stabilization of				F	ield Parame	ters						JP:		
	continue until thre measurements a criterion		errous Iron NM		PID (ppm):			NN	/1		DRUM N	IO:			

Project Nam	e: Boeing	C-6 F	acility, Si	itewide Ann	ual Sampling	, Mar-10	Da	ate:			3/22	- / 2010		
Project No.:			1	1155.010			Pi	epared	by: ⊅M					
Well Identifi	cation:		ı	MWC006			W	eather:		ly clo	Ndy			
Measureme	nt Point Descript	tion:	TOC	= , N			Pi	ımp inta	ake: 🚶) 5 ′		Scree	n: 95	- 115
Α	В		С	D	= C - B	E = B - A	()	Н				J	K = H x I + J
Depth to LNAPL (ft-bmp)	Depth to Static Water Level (ft-bmp)		Well Tota Depth (ft-bmp)	vvate	er Column light (ft)	LNAPL Thickness (ft)	Tub Dian (i	neter	Tubii Volur (Liter/f	ne		j Length eet)	Flow Cell Volume (Liters)	Initial Purge Volume (Liters)
ŅΑ	60.36		115'	5	5	NA	1,	/4	0.00	54	111	0	0.75	1.4
				Ga	llons/Foot		Field E	quipmen	t: QED, C	TSI lot				
Well Dia	ameter (inches) = 2		0.75	2	4	6	Purge I	/lethod:	Micropurge)				
F - Gallo	ns per foot of casi	ng	0.02	0.16	0.65	1.47	Well Co	ndition:	600	⋑				
Time	Flow Controller Settings	Pt	olume urged _{-iters)}	Flow Rate (mL/min)	Water Level (ft-bmp)	Temperature (°C) [+/- 10%]	(mS	activity 5/cm) 10%]	Dissolve Oxygen (mg/L) [+/- 10%	1 [+/-	pH 0.1 pH]	ORP (mV) [+/- 10%]	Turbidity (NTU) [+/- 10%]	Observations
	Previous Stab	ilized	Parameter	rs: 3/10/200	9 9:55:00 AN	1 23.20	0.	78	0.530		7.28	-182.00	756.00	
1329	65 psi	į.	5	200	60.37	23.14	0.	851	1.74	,59	1.41	28.i	320	
1332	65ps:	2.	.)	200	60.39	23.08	0.8		1.41	7	.42	31.3	372	
ĵ33 5	65 psi	2	Γ.	200	60.39	23.06	0.8		1.36		-42	32.0	379	
1338	65 psi	3.	3	200	60.38	23.10	0.8		1.08	.	.43	32,1	368	
1341	65 psi	3	9	200	60.38	23-10	0.8		1.13		.40	32.1	349	
i 344	is psi	ન	.5	200	60.38	23.12	0.8	.44	1.09	7	.39	31.7	355	
Purge Start Time	Purge End Time	FI	erage low _/min)	Total Volume Purged (Liters)	Total Casing Volumes Purged	80% Recover Level De (Dx0.20)	pth	Sampl	Level at ing Time bmp)	Sam Colle Tin	ction		Sample Identif	ication
1321	1345	20	90	4,5	N/A	NA		& C ⋅	38	1345			_WG201003 <i>1</i> 2	.201
Purging will	s) [stabilization continue until thremeasurements and criterion.	e	_	*		Field Paramete PID (ppm):	rs			DR	DUP UM NO		er ichonom	

Project Nam	e: Boeing (C-6 Fa	acility, S	itewide Ann	ual Sampling	, Mar-10	Da				/ 2010		
Project No.:				1155.010			Pre	epared					
Well Identifi	cation:			MWC007			We	eather:	501	714			
	nt Point Descripti	on:		TOL			Pu	mp Inta	ake: 10	7 '	Screen		117
A	B		С) = C - B	E = B - A	G		H			44 y	K=HxI+.
Depth to LNAPL (ft-bmp)	Depth to Static Water Level (ft-bmp)		Well Tot Depth (ft-bmp)	wat H	er Column eight (ff)	LNAPL Thickness (ft)	Tubi Diam (in	eter	Tubin Volun (Liter/fo	ne (f pot)	g Length eet)	Flow Cell Volume (Liters)	Initial Purge Volume (Liter
٠	57.99		119	6	1.01	Agricolomb-	1/-	4	0.005	54 / 0	7	8.0008	1.4
				Ga	llons/Foot		Field Eq	uipmen	t: QED, Pi	ublic Parking Lo	ot		
Well Di	ameter (inches) = 4		0.75	2	4	6	Purge N	lethod:	Micropurge				
F - Gallo	ns per foot of casir	ıg	0.02	0.16	0.65	1.47	Well Co	ndition:		Guo	A		
Time	Flow Controller Settings	Vol Pu	lume rged ters)	Flow Rate (mL/min)	Water Level (ft-bmp)	Temperature (°C) [+/- 10%]	Condu (mS. [+/-	/cm)	Dissolve Oxygen (mg/L) [+/- 10%]	pH [+/- 0.1 pH]	ORP (mV) [+/- 10%]	Turbidity (NTU) [+/- 10%]	Observations
	Previous Stat	ilized	Parame	ters: 9/9/20	09 9:21:00 Al	и 23.01	0.9	92	1.720	8.92	-122.00	1.22	
- - - 	60831 30-100 FF	ì,		200	58.02	22.45	8.4103	1.032	4.70	7.31	-261	22	
1 1-6-43 1143	00123	l.		i	58.03	22.32		1.044	3,25	7.28	-44.6	630	
1-1-4-6 1146	NA PARAMETER AND AND AND AND AND AND AND AND AND AND	2.6			58.03	25.53	i.	049	2.67	7.27	- 43.5	2.60	
1048 114	× 1	3.	/		58.03	22.17	1.	052	2.44	7.27	-41.3	1.90	
1151		3.0		and the same of th	58.03	22.15	1.0	55	2.26	7.27	-38-9		
1153	w.D.	4.(58.03	22-14		56	2.20	7.27	-37.5		
1156	J.	Ų,		U	58.03	22.09	1.0	5 <u>8</u>	2.10	7.26	-36.3	2.28	
Purge Start Time	Purge End Time	FI	rage ow /min)	Total Volume Purged (Liters)	Total Casing Volumes Purged	(1)(1)	epth	Samp	Level at ling Time bmp)	Sample Collection Time		Sample Identifi	cation
1#33	1156	20	0	4.5	N/A	NA		5 8	.03	1157	MWC007	_WG201003	22 _01
Notes: (un Purging will	its) [stabilization c continue until thre measurements ar	riteria e	a]			Field Parameter PID (ppm):	ers			DU DRUM NO			

Project Nam	e: Boeing	C-6 Facil	lity, Sitew	vide Annu	al Sampling, M	1ar-10)		Date:			3/2	<u>6 / 2010</u>		
Project No.:				55.010				I	Prepared	l by: Be	2,72 5				
Well Identific	cation:		MV	/C009				1	Weather:	: 5 _{2 n}	αV.				
Measuremer	nt Point Descript	ion:	TUL						Pump Int	take: 🎉	11.		Screen:	101 - 12	1
Α	В		С		D = C - B		E =	B - A		G ′		Н	I	J	K=HxI+J
Depth to LNA (ft-bmp)	PL Depth to St Water Lev (ft-bmp)		Well Tota Depth (ft-bmp)		Water Columr Above Pump Intake(ft)			APL less (ft)	Dia	ibing meter (in)	Vo	ubing olume er/foot)	Tubing Length (feet)	Flow Cell Volume (Liters)	Initial Purge Volume (Liters)
NM	61.19		125		63 81		MA	7		1/4	0	.0054	111	0.8	1.4
				Gall	ons/Foot			Field	Equipme	nt: YSI, [Dedica	ated Low-flo	w		
Well Dia	ameter (inches) = 4		0.75	2	4		6	Purge	Method:	Micropur	ge				
F - Gallo	ns per foot of casi	ing	0.02	0.16	0.65		1.47	Well (Condition	1-00		/			-
Time	Flow Controller Settings	Volun Purge (Liters	ed Fig	ow Rate nL/min)	Water Level (ft-bmp)		nperature (°C) +/- 10%]	(r	ductivity nS/cm) /- 10%]	Dissolv Oxygo (mg/L [+/- 10	en -)	pH [+/- 0.1 pH]	ORP (mV) [+/- 10%	Turbidity (NTU) [+/- 10%]	Observations
	F	Previous S	Stabilized	Paramete	rs: 09-11-09		21.97		0.86	0.30		7.39	17.00	2.20	
0929	65/51/So- 1100 N.	1.5	7	50	63.81		1,14		182	1.02		7.22	-103.6		
0931		2.0		Spiron and A	6381		21.25		80_	067		7.19	-/01.		
0933	e de la companya de l	2.5			63.81		21.34	0	. 23	0.5		7.17	.99.2		
0435	Negative sur	3.0			63.81		11.35	0	84_	04		715	-97.1		
0937		3.5			63.81	2	21.35	0	34	0.4	5	7.14	- 960	0.64	
Purge Start Time	Purge End Time	Averaç Flow (mL/mir	ge V	Total olume urged Liters)	Total Casing Volumes Purged	80%	Recover Level De (Dx0.20)	pth	Samp (f	r Level at bling Time t bmp)	C	Sample collection Time		Sample Identi	
0423	0437	250	3	.5	N/A		NA			31		0938	J	_WG201003 ₍	<u> 26_01</u>
Notes: (unit	ts) [stabilization o						Paramete	rs	00 (00)	(1)		DU	-		
Purging will consecutive stabilization	continue until thre measurements a criterion.	F	errous Iron NM		PI	D (ppm):		0.8			DRUM NO	U:		4	

Project Nam	e: Boeing	C-6 F	acility, S	itewide Ann	ual Sampling,	Mar-10		ite:		3/3	22/2010)	
Project No.:				1155.010			Pr	epared	by: D↑				
Well Identific	cation:			MWC011			W	eather:	PAR	ily cl	h and		
Measuremer	nt Point Descript	ion:	TOC	: , N			Pu	ımp Int	ake:	04	Scre	een: 94	- 114
A	В		С	D	= C - B	E = B - A	(}	5 - 5 - H		<u>d</u> landi		K=Hxl+J
Depth to LNAPL (ft-bmp)	Depth to Static Water Level (ft-bmp)	,	Well Tot Depth (ft-bmp)	wate	r Column ight (ft)	LNAPL Thickness (ft)	Tub Diam (ir	eter	Tubin Volum (Liter/fo	ie	ng Length (feet)	Flow Cell Volume (Liters)	Initial Purge Volume (Liters)
NA	60.62		114	5	3	NA	1/	4	0.005	4 (10	0.75	1,4
				Gal	lons/Foot		Field E	quipmen	nt: QED, CT	SI lot			
Well Dia	ameter (inches) = 2		0.75	2	4	6	Purge N	/lethod:	Micropurge				
F - Gallo	ns per foot of casi	ng	0.02	0.16	0.65	1.47	Well Co	ndition:	Goed)			
Time	Flow Controller Settings	Pui	ume rged ters)	Flow Rate (mL/min)	Water Level (ft-bmp)	Temperature (°C) [+/- 10%]	(mS	ictivity /cm) 10%]	Dissolved Oxygen (mg/L) [+/- 10%]	pH [+/- 0.1 pł	ORI (mV [+/- 10) (NTU)	Observations
<u>a en daraga di Sul.</u> Priorita nga paragan	Previous Stabili	zed Pa	arameter	s: 3/10/2009	10:27:00 AM	21.60	1.	07	0.470	7.22	-161.	00 126.00	
1430	68 psi	17	00	240	60.63	22.33	1.6	27	1.44	€.95	21.1		
1433	69 psi		125	240	60.63	22.29	1.6	:3 i	1.35	6.97	16.1		
1436	68 psi	31	25	240	60.63	22.21	1.6	35	1.35	6.95	9.2		
1439	68 psi	3%	50	240	60.63	22.23	1.6		1.27	6.94	3.8		
1442	68 pc	45	50	240	60.63	22.17	1.6	3 (1.11	6.95	0.9	193	
1445	Ce 8 p3 1	52	75	240	60.63	22.17	1.6		1.13	6.93	-1.3	158	
1448	69 pci	60	00	240	60.63	22.17	1.5		1.06	6.92	- U.H	149	
1451	60 psi	67:	25	240	60.63	22.17	1.5	85	1.09	6.91	-5.1	156	
Purge Start Time	Purge End Time	Avei Flo	w	Total Volume Purged (Liters)	Total Casing Volumes Purged	80% Recover Level De (Dx0.20) -	pth	Sampl	Level at ling Time	Sample Collection Time		Sample Identif	ication
1423	1453	2.	10	7.0	N/A	NA		60-	63	1453		11_WG201003 2	2 _01
Notes: (unit	s) [stabilization continue until thre measurements ar criterion.	riteria e]			Field Parameter PID (ppm):	S			DRUM N		22-01@1404	ş

Project Nam	e: Boeing	C-6 Facilit	y, Sitew	ide Annu	al Sampling, M	/lar-1	0		Dat	te:			3/	241 2010		
Project No.:			115	5.010					Pre	epared	by:):M			
Well Identifi	cation:		MV	/C015					We	ather:		S	Piny			
Measureme	nt Point Descript	tion: 🍞	06,1	7					Pu	mp Inta	ake:	117		Screen:	100 - 12	25
Α	В		С		D = C - B		E	= B - A		(G		Н		J	K = H x I + J
Depth to LNA (ft-bmp)	Depth to St Water Lev (ft-bmp)		Vell Tota Depth (ft-bmp)		Water Columi Above Pump Intake(ft)			NAPL kness (ft)	Dian	oing neter n)	١ ١	Tubing /olume .iter/foot)	Tubing Length (feet)	Flow Cell Volume (Liters)	Initial Purge Volume (Liters)
Als	5973		125		52		ì	ίA		1	/4		0.0054	125	21.5 think	1.4
				Gall	ons/Foot			Fiel	d Eq	uipmen	t: YSI, I	Porta	able Low-flo	w		
Well Dia	ameter (inches) = 4		0.75	2	4		6	Pur	ge M	ethod:	Micropu	rge				
F - Gallo	ns per foot of casi	ng (0.02	0.16	0.65		1.47	Wel	l Cor	ndition:	Go	000)			
Time	Flow Controller Settings	Volume Purgeo (Liters)	1 FIC	ow Rate nL/min)	Water Level (ft-bmp)		nperatur (°C) +/- 10%]		ondud (mS/d [+/- 1		Dissol Oxyg (mg/l [+/- 10	en L)	pH [+/- 0.1 pł	ORP (mV) [+/- 10%	(NTU)	Observations
	F	revious St	abilized	Paramete	ers: 03-10-09		20.01		0.8	6	1.64		7.24	-171.0		
1023	78 ps.	1.5		250	59.76	o de la companya de l	20.14		٥.8	42	1.6	2	8.21	-22		
1026	79 psi	2.3		250	59.77	2	.O.41	0	0.8	84	1.3	9	8-26			
1029	78 psi 78 psi	3.0	6	250	59.77	2	0.54			92	(, L		7.40	,	7	
1032	78951	3,8		250	59.77		0.56		.8		1.3		7.31	2.9	8	
1035	79 ps	4.5		LSO	59.77		0.53	0	. 80	74	1.2		7.16	5.9	7	
1038	76 951	5.3		250	59.77		0.53		. 8 6		1.37		7.22		7	
1041	78 psi	6.0		250	59.77	"L	0,50		-60	46_	1.33	3	7-21	9,0	8	
				I												
Purge Start Time	Purge End Time	Average Flow (mL/min)	Vo Pr	otal olume urged _iters)	Total Casing Volumes Purged	80%	Recover Level D	epth	ter	Sampl (ft	Level at ing Time bmp)		Sample Collection Time		Sample Identi	
1017	1045	.250		Ø .	N/A		N/	4		59.	77		1043		5_WG201003	2년 _01
Notes: (uni	ts) [stabilization o				F	ield	Paramet	ers						JP:		
	continue until thre measurements a criterion		F	errous Iron NM		PI ()	ID (ppm): ,			NN	Λ		DRUM N	10:		

Project Nam	A: Booing		rility Site	wide Annı	ual Sampling, N	//ar-10		Dat	ю·			3/2	₹ / 2010		
Project No.:	C. Doeing	0-0 1 ac		55.010	an Jamping, i	10			pared	bv:	0	M	, 20.0		
Well Identific	eation:			WC016					ather:			wy			
	nt Point Descript	ion:	TOC.						mp Inta		115	t	Screen:	102.5 - 12	7.5
A	В		c		D = C - B	E	= B - A	<u>'</u>		3		Н	I	J	K = H x I + J
Depth to LNA (ft-bmp)	PL Depth to St Water Lev (ft-bmp)		Well To Depth (ft-bmp	1	Water Colum Above Pump Intake(ft)	, <u>L</u>	NAPL kness	(ft)	Dian	oing neter n)	V	Tubing Yolume iter/foot)	Tubing Length (feet)	Flow Cell Volume (Liters)	Initial Purge Volume (Liters)
NA	60.35	5	127	.5	55	ı	JA		1	/4	(0.0054	120	0.75	1.4
				Gal	lons/Foot		Fie	ld Equ	uipmen	t: YSI, F	orta	ble Low-flow	/		
Well Dia	ameter (inches) = 4		0.75	2	. 4	6	Pui	rge Me	ethod:	Micropur	ge				
F - Gallo	ns per foot of casi	ng	0.02	0.16	0.65	1.47	We	ell Con	ndition:	ଷ୍ଟେ	D				
Time	Flow Controller Settings	Volui Purg (Liter	jed F	low Rate (mL/min)	Water Level (ft-bmp)	Temperatu (°C) [+/- 10%]	re C	onduc (mS/c [+/- 10	cm)	Dissolv Oxyge (mg/L [+/-10	en _)	pH [+/- 0.1 pH	ORP (mV) [+/- 10%]	Turbidity (NTU) [+/- 10%]	Observations
J	F	revious	Stabilized	l Paramete	ers: 03-12-09	23.34		1.2	6	5.410		8.32	-39.00	49.10	
1248	83 psi	1.5		250	60.41	22.38		1.2		2.89		7-53	136.9	í O	
1251	93 05	2.3		250	60.43	22.34		1.20	S,	2.5	g	7.55	133. i	15	
1254	83 psi	3.0		250	60.44	22.29		1.27		2.55		7.55	132.1	2 i	
1257	83 psi	3.8	-	250	60.42	22.32		1.2		2.51		7.57	131.5	22	
1300	83 ps:	4.5		250	60.41	22-34		1.2-	76	2.50	0	7.59	130.6	12	
1303	93 ps:	5.3		250	60.40	22.36		1.2		2.5		7.59	130.2		
1306	83 pg:	6.0		250	60.41	22,33		1.2		2-41		7.60	130.7		
1309	83 psi	6.8		250	60.41	22.35	- 6	1.2	79	2.51	1	7.59	131.0	7	
Purge Start Time	Purge End Time	Average Flow (mL/mi	v F	Total /olume Purged (Liters)	Total Casing Volumes Purged	80% Recov Level I (Dx0.2	Depth	ater	Sampl	Level at ing Time bmp)		Sample Collection Time		Sample Identii	fication
1242	1325	250	0	7	N/A	N.	A		bo	.4 (1312	MWC016_	WG201003	24 _01
	s) [stabilization of				-	ield Parame	ters							WG201003 ·2	્ર્ય _02
Purging will	continue until thre measurements a	e -		Ferrous Iror NN		PID (ppm): 0 , 5			NM	1		DRUM N	O:		

	/IRONMENTAL, IN									10-				217	6 / 20	10		
Project Nam	e: Boeing	C-6 Fa				al Sampling, M	ar-10			Da		by:			U 1 ZU	10		
Project No.:				1155.							epared eather:			3005.				
Well Identific				MWC							mp Inta			2.5	Screen	•	100 - 12	5
Measuremer	nt Point Descript	ion:		TO		W	т				•		//		Julean	<u> </u>	J	K=HxI+J
Α	В			2		D = C - B		E =	B - A	4	(<i>G</i>		Н	T L	_	J	K-HXIT3
Depth to LNA (ft-bmp)	PL Depth to St Water Lev (ft-bmp)		Well De _l (ft-b			Vater Columr Above Pump Intake(ft)		LN Thick	IAPL		Dian	oing neter n)	٧	ubing olume ter/foot)	Tubing Lengti (feet)	h	Flow Cell Volume (Liters)	Initial Purge Volume (Liters)
NW	63.20		12	8	(64.80		N	m		1	/4	(0.0054	117-5		0.8	1.49
	•				Galle	ons/Foot			Fi	eld Eq	uipmen	t: YSI, [Dedic	ated Low-fl	ow			
Well Dia	ameter (inches) = 4		0.75		2	4		6	Ρι	urge N	lethod:	Micropur	ge					
F - Gallo	ns per foot of casi	ng	0.02		0.16	0.65	1	1.47	W	ell Co	ndition:							
Time	Flow Controller Settings	Volu Pure (Lite	ged		Rate /min)	Water Level (ft-bmp)		peratur (°C) ·/- 10%]	e (Condu (mS/ [+/- 1		Dissol Oxyg (mg/l [+/- 10	en _)	pH [+/- 0.1 pl	, (r	RP nV) 10%]	Turbidity (NTU) [+/- 10%]	Observations
	F	revious	Stabiliz	zed Pa	ramete	rs: 09-11-09		22.98		0.0	37	0.22		7.00		1.00	2.32	
1158	65P>I/50,11001	1.5	5	25	Ü	64,80	2	₽ 5 3		0-3	3Z	2.52		6:97	1/1	?3.5	8.46	
1200		2.0				64.80	72	279		U	84	1.00		6.95		94.1	3.08	
1202		2-9				64,80	7	L 280	<u> </u>		86	0.9		6.95	-19	<u>70-8</u>	2,71	
1204		3.0)	and the state of t		64.80		267			86	0.5%		6.43		9.4	2.16	
1206		3.5		and the second		6480	2	267		0		6.40		6.43		383	1.89	
1208		4.0	>	<u> </u>	<i>J</i>	64.80	<u> </u>	2.65		0 . 8	8	0.4	4	6.97	- / 3	88.1	1.97	
Purge Start Time	Purge End Time	Aver Flo (mL/r	w	To Volu Pur (Lite	ıme ged	Total Casing Volumes Purged	80%	Recove Level D (Dx0.20	epth	1	Samp	Level at ling Time bmp)		Sample Collection Time			ample Identi	
1152	1208	250	2	4.	U	N/A		N/	\		6	4.80		1209		017_\	WG201003 <i>2</i>	<u>6</u> _01
Notes: (uni	ts) [stabilization of					F	ield F	Paramet	ers						JP:			
Purging will	continue until thre measurements a	ee		Ferr	ous Iron NM			D (ppm):			NN	Л		DRUM	10:			

Project Nam	e: Boeing	C-6 F	acility,	Sitewic	de Annu	al Sampling, N	/lar-10		Da	ate:			3/2	⟨√ 2010		
Project No.:				1155	.010				Pr	epared	by:	Dn	^			
Well Identific	cation:			MW	C021				W	eather:	<i>స్</i> ల (MAY				
Measuremer	nt Point Descript	ion:	to	ن الم، ت					Pu	ump Inta		110	•	Screen:	97 - 12	2
A	В		***************************************	С		D = C - B		E = B -	A	(G		Н	I	J	K = H x I + J
Depth to LNA (ft-bmp)	PL Depth to St Water Lev (ft-bmp)		De	Total epth bmp)	,	Water Colum Above Pump Intake(ft)		LNAP icknes		Dian	oing neter n)	Vo	ibing lume er/foot)	Tubing Length (feet)	Flow Cell Volume (Liters)	Initial Purge Volume (Liters)
NA	61.71		12	2		48		NA		1	/4	0.	0054	120	0.75	1.4
					Gall	lons/Foot		F	ield Ed	quipmen	t: YSI, E	Dedica	ted Low-flo	w		
Well Dia	imeter (inches) = 4		0.75	5	2	4	6	P	urge N	/lethod:	Micropur	ge				
F - Galloi	ns per foot of casi	ng	0.02	2	0.16	0.65	1.47	v	Vell Co	ndition:	Go	OD				
Time	Flow Controller Settings	Pu	lume rged ters)		/ Rate ./min)	Water Level (ft-bmp)	Temperat (°C) [+/- 10%		(mS	uctivity l/cm) 10%]	Dissolv Oxyge (mg/L [+/- 10°	en .)	pH [+/- 0.1 pH]	ORP (mV) [+/- 10%	Turbidity (NTU) [+/- 10%]	Observation
<u>, </u>	F	reviou	s Stabili	zed P	aramete	ers: 09-10-09	23.78			83	0.300	$\overline{}$	9.62	-286.00	0.34	
1037	95 psi	1.	4	3	50	61.80	22.5	7	0.1	964	0.8	2	7.72	-625	1 1	
1040	9505	2	.5	3	50	61.81	22.4	5	0.4	159	0.53		7.72	-50.3		
1043	95 psi	3.	5		50	61.81	22.4	6	0.9	58	0.5	2	7-73	-43.9		
1046	95 psi	ч.	6	35	50	61.82	22.4	8		15%	0.5		7:72	~39.4		
1049	95 psi	5,	b	35	50	61.82	22.4	5	0.9	58	0.5	2	7.73	- 35.5	5 2	
Purge Start Time	Purge End Time	Fle	rage ow 'min)	Vol Pur	tal ume ged ers)	Total Casing Volumes Purged	80% Reco Leve (Dx0	overy V I Depti 20) + B	1	Sampli	Level at ing Time bmp)		Sample ollection Time		Sample Identi	fication
1033	persued cytesed variation	35	50	(0	N/A	ı	NΑ		61.	82		1050	MWC021	_WG201003	26 _01
	s) [stabilization c]		1	F	ield Param	eters					DUI			
	continue until thre measurements a		nin	Fen	ous Iron		PID (ppm):		NM	1		DRUM NO) :		

- CONTRACTOR -	TRONMENTAL, IN					· · · · · · · · · · · · · · · · · · ·			T_			·	0/.	1 0040		
Project Nam	e: Boeing	C-6 F	acility, S			al Sampling, N	//ar-10			ite:	8			25/2010		
Project No.:				1155						epared		DM				
Well Identific				MWC						eather:		107		0	97 - 11	7
Measuremer	t Point Descrip	tion:	20	<u> , N</u>	·				Pu	mp Int				Screen:		
Α	В			C		D = C - B	E	= B - A			G	ŀ	1	1	J	K=HxI+J
Depth to LNA (ft-bmp)	PL Depth to St Water Lev (ft-bmp)	/el	De	Total pth omp)		Vater Colum Above Pump Intake(ft)	LI	NAPL kness	(ft)	Diar	oing neter in)	Tub Volu (Liter	ume	Tubing Length (feet)	Flow Cell Volume (Liters)	Initial Purge Volume (Liters)
NA	58.09		11	7		49	ì	UA		1	/4	0.0	054	120	0.75	1.4
					Gallo	ons/Foot		Fie	ld Eq	uipmen	t: YSI, De	edicate	ed Low-flo	ow		
Well Dia	meter (inches) = 4		0.75	5	2	4	· 6	Pu	rge N	lethod:	Micropurg	Э				
F - Gallon	ns per foot of cas	ing	0.02	2	0.16	0.65	1.47	We	ell Co	ndition:			WHA			
Time	Flow Controller Settings	Pu	lume rged ters)		v Rate -/min)	Water Level (ft-bmp)	Temperatur (°C) [+/- 10%]	еС	ondu (mS/ [+/- 1	ctivity /cm) 10%]	Dissolve Oxyger (mg/L) [+/- 10%	ו	pH [+/- 0.1 pH	ORP (mV) [+/- 10%	Turbidity (NTU) [+/- 10%]	Observations
<u> </u>	S.	Previou	s Stabili	zed Pa	aramete	rs: 09-10-09	24.55		0.6		0.190		9.67	-261.00		
1047	70 ps:	2	.5	2	50	5820	22.25		0.8	39	1.42		7.87	179.0		
1050	70 psi	2	.3	23	50	58.20	22,45		0.8	377	0.71		7.84	180.		
1053	70 psi	3.	Ú	2	50	58.20	22.58		0.9	181	0:64		7.84	180-6		
1056	70 psi	3.	ç	2	50	58.20	22.68		O . E		0.67		7.84	180.3		
1059	70 05:	i.	5	2	50	58.20	22,75		0.8		0.62	/	7.81	186.	9 1	
iloz	70 050	5	, 3	2	50	58.20	22.80		ð. Q	ို ရှိ	0.61		7.84	180.	3 2	
Purge Start Time	Purge End Time	Fle	rage ow /min)	Vol Pur	otal ume rged rers)	Total Casing Volumes Purged	80% Recov Level I (Dx0.20	Depth	ater	Sampl (ft	Level at ling Time bmp)	Co	ample llection Time		Sample Ident	ification
1041	1105	2	50	5	.5	N/A	N/	4		58	-20	(Boster,)	103	MWC022	_WG201003	25 _01
	s) [stabilization	criteria]			F	ield Paramet	ters							_WG201003	25 _02
Purging will of	continue until thre measurements a	ee		Fer	rous Iron NM		PID (ppm):		Ct	temet 0.5	s Biois mg/L		ORUM N	O:		

Project Nam	VIRONMENTAL, II		acility S	itewide Annı	ual Sampling,	Mar-10	100 AL 100	Da	te:			3/2	<i>5</i> / 2010	Personal Control Control	
Project No.:		, , , , ,		1155.010	oapg,	That 10			pared	bv:	DM		· · · · · · · · · · · · · · · · · · ·		
Well Identifi	cation:			MWC023					ather:	-	NN	····			
	nt Point Descrip	tion:	Too						mp Int		<i>10</i>		Screen:	97 - 117	7
A	В		C		D = C - B		E = B - A		(G		Н	ı	J	K = H x I + J
Depth to LNA (ft-bmp)	Depth to S Water Le	vel	Well Der (ft-b	oth	Water Colum Above Pum Intake(ft)	n	LNAPL ickness	(ft)	Dian	bing meter in)	Vol	bing ume r/foot)	Tubing Length (feet)	Flow Cell Volume (Liters)	Initial Purge Volume (Liters)
NA	58.00		11	7	49		NA		1	/4	0.0	0054	120	0.75	1.4
				Gal	lons/Foot		Fie	ld Eq	uipmen	t: YSI, D	edicat	ed Low-flo	w		
Well Dia	ameter (inches) = 4		0.75	2	4	6	Pu	rge M	ethod:	Micropur	ge				
F - Gallo	ns per foot of cas	ing	0.02	0.16	0.65	1.47	We	II Cor	ndition:	Go	OP				
Time	Flow Controller Settings	Pur	ume ged ers)	Flow Rate (mL/min)	Water Level (ft-bmp)	Temperat (°C) [+/- 10%	ļ	ondud (mS/d [+/- 1		Dissolv Oxyge (mg/L [+/- 109	en)	pH [+/- 0.1 pH]	ORP (mV) [+/- 10%]	Turbidity (NTU) [+/- 10%]	Observations
	ſ	revious	s Stabiliz	ed Paramet	ers: 09-11-09	23.73		0.9	-	0.380		7.40	-218.00		
1425	76 251	1	5	300	58.15	22.58		1 - 1	71	0.81		7.40	-18.C	3	
1428	76 psi	2.4	1	300	58.14	22.52		- 25	12	0.4	Ą	7.38	-3.9	3	
1431	76 ps:	3.3	3	300	58.15	22.53		.25	3	0.49		7-38	2.7	3	
1434	76 psi	4.7	2	300	58.15	22.49		. 25		0.49		7.38	6.5	3	
1437	76 ps'1	5.1		300	58.15	22.56	ĺ	. 25		0.49		7-38	8.6	3	
Purge Start Time	Purge End Time	Aver	w	Total Volume Purged (Liters)	Total Casing Volumes Purged	80% Reco	overy Wa I Depth (20) + B	iter	Sampl	Level at ing Time bmp)	Co	ample llection Time		Sample Identif	fication
1420	1510	300	>	5	N/A	1	VΑ		58.	15	1 %	140	MWC023_	_WG201003 (25 _01
Notes: (unit	s) [stabilization of					Field Param	eters					DUI			
	continue until thre measurements a criterion.		in	Ferrous Iror		PID (ppm):		NM	/		ORUM NO	D :		

	VIRONMENTAL, IN				L NA 40			Da	<u> </u>			312	} / 2010	· · · · · · · · · · · · · · · · · · ·	
Project Nam	e: B	oeing C-6			npling, Mar-10					bu D.	6	316,	3 / 2010		
Project No.:				5.010					pared		1 S.				
Well Identific				C024					ather:	ه ۱۸ د ک			Screen:	96 - 12	4
Measuremer	nt Point Descript	ion:	TOL				······································	1		ake: 103			ocreen.		
A	В		С		D = C - B	E	= B - A		(G		H	<u> </u>	J	K=HxI+J
Depth to LNA (ft-bmp)	Depth to St Water Lev (ft-bmp)		Well Tota Depth (ft-bmp)	••	Water Columr Above Pump Intake(ft)	_ L	NAPL kness	(ft)	Dian	oing neter n)	Vol	bing lume r/foot)	Tubing Length (feet)	Flow Cell Volume (Liters)	Initial Purge Volume (Liters)
NM	59.30		125		65.7	1 10	1		1	/4	0.0	054	108.5	0.8	1.4
				Gall	ons/Foot		Fie	eld Eq	uipmen	t: YSI, D	edicat	ed Low-flo	w		
Well Dia	ameter (inches) = 4		0.75	2	4	6	Pu	rge M	ethod:	Micropurg	е				
F - Gallo	ns per foot of casi	ng	0.02	0.16	0.65	1.47	We	ell Co	ndition:						
Time	Flow Controller Settings	Volum Purge (Liters	d Fig	w Rate	Water Level (ft-bmp)	Temperatu (°C) [+/- 10%]		ondu (mS/ [+/- 1		Dissolve Oxyge (mg/L) [+/- 10%	n	pH [+/- 0.1 pH]	ORP (mV) [+/- 10%	Turbidity (NTU) [+/- 10%]	Observations
	F	revious S	tabilized	Paramete	rs: 09-09-09	22.70		1.4	15	0.280		7.20	-31.00		
1042	6SPSI/Son/10 off	15 J 1.	5 2	50	59.30	22.56		1.4		1.05		6.99	-80.6	~	
1044	1	20			59.30	22.62		1.3		0.65		6.95	-80		
1046		25			59.30	22.62		1.3		0.52		693	_80.2		
1048		3.0			5930	22.62		1.3	9	0.42		6.91	- 80.5	3.22	
1050	J	3.5	١		59.30	22.60		1.39	<u> </u>	0.38		6.90	-81.0	2:32	
Purge Start Time	Purge End Time	Averag Flow (mL/min	e V	Total plume urged Liters)	Total Casing Volumes Purged	80% Recov Level (Dx0.2	Depth	ater	Sampl	Level at ling Time		Sample ollection Time		Sample Ident	ification
1036	1056	250		.5	N/A	N	A		5 6	130	_/	051	<u> </u>	_WG201003	
	ts) [stabilization o			-	F	ield Parame	eters							_WG201003	23 _02
Purging will	continue until thre measurements a	е	F	errous Iron ${\cal O}$. ${\cal O}$		PID (ppm):	:		NI	Л		DRUM N	0:		

Project Nam	TRONMENTAL, IN		acility S	itowida Ar	anual	Sampling, M	1ar-1	Λ		n	ate:			315	26 / 20°	10		
Project No.:	c. boeing	U-0 F	-	1155.010		Camping, iv	1a1-1				repared	by:	<u>i</u>	m	_ © / <u>E</u> U			
Well Identific	ration:			MWG001							eather:	~ y .		ルルソ				
	nt Point Descrip	tion:		C, N	•						ump Inta	ake:	1.7		Screen	:	156 - 18	6
A	В		(<u> </u>		D = C - B		E	B - /		<u> </u>	G		Н	l		J	K=HxI+J
Depth to LNA (ft-bmp)	PL Depth to St Water Lev (ft-bmp)	/el	Well Dep	oth	A	ater Columr bove Pump Intake(ft)		LN Thick	IAPL nes	-	Diar	oing neter n)	V	ubing olume ter/foot)	Tubing Length (feet)	ĥ	Flow Cell Volume (Liters)	Initial Purge Volume (Liters)
NA	62.63	ζ	186	e		108		l	VF	£	1	/4	C	0.0054	180		0.75	1.7
				C	Sallon	ns/Foot			Fi	ield E	quipmen	t: YSI, [Dedic	ated Low-fl	ow			
Well Dia	meter (inches) = 2		0.75	2	2	4		6	P	urge l	Wethod:	Micropur	ge					
F - Gallor	ns per foot of casi	ing	0.02	0.	16	0.65		1.47	W	ell Co	ondition:	G) O O)				
Time	Flow Controller Settings	Pu	ume rged ters)	Flow Rat (mL/min)		Water Level (ft-bmp)		nperature (°C) +/- 10%]	e ((mS	uctivity S/cm) 10%]	Dissol Oxyg (mg/l [+/- 10	en _)	pH [+/- 0.1 pH	, (n	RP nV) 10%]	Turbidity (NTU) [+/- 10%]	Observations
1	F	Previou	s Stabiliz	ed Param	eters	: 09-10-09		25.82			.59	0.23		9.93	-33	8.00	0.42	
1129	110 psi	asygna ,	8	200	(62.77	2	2.53		0.6	074	0.53	<u>}</u>	7.99	-70		3	
1132	110 psi	2.	j	200	ĺ	62.75	2	2.52		0.6		0.49	3	7.99	-64		3	
1135	110 psi	3,	0	200	G	2.74	27	2.53		0.6		0.43)	7.99	-50		ij	
1(3%	110 ps:	3,	6	200		2.75	2	2.4(0.6	76	0.40		7.99		7.2		
1141	IIO psi	4.	2	200	- 6	2-75	2-	2.30		0.6	76	0.43	•	7.99	-5	4.9	3	
Purge Start Time	Purge End Time	Avei Flo	- 1	Total Volume Purged (Liters)	,	Total Casing Volumes Purged	80%	6 Recove Level D (Dx0.20	epth		Sampl	Level at ing Time		Sample Collection Time		S	Sample Identi	ication
1120	/230	20	00	4.5		N/A		NA			62:	75		143	MWG	001_	WG201003	26 <u>_</u> 01
	s) [stabilization o]			F	ield l	Paramete	ers					DL				
	continue until thre measurements a criterion.	nin	Ferrous I	Iron (m IM	ng/L)	PI	D (ppm):			NN	1		DRUM N	10:				

ENV				- - - -	Citourido :	١	al Camplina	Mari	10		Date			<u></u>	21	2/19	040				
Project Nam Project No.:	ie:	RO	eing C-6 I	-асшту,	1155.01		al Sampling,	ıvıar-	IU			e: pared	by:			2612	.010				
Well Identifi	cation				MWG00						_	pareu ather:		Bê-							
Measuremei			ription:		TUC	, _					ļ	np Inta		75	. 7	Scree	n:	162 - 19)2		
A		III BOSC		1	C		D = C - B		E =	B - A			3	<u>/></u>	Н	1	······	J	K=HxI+J		
Depth to LNA (ft-bmp)	\PL	Depth to		Well	Total epth bmp)	1	Water Colur Above Pum Intake(ft)	ıp		APL	ft)	Tul Dian	oing neter n)	V	ubing olume er/foot)	Tubi Lenç (fee	gth	Flow Cell Volume (Liters)	Initial Purge Volume (Liters)		
NM		63.7	14	10	15		13126		NA	M		1	/4	0	.0054	175	, '	0.8	1.75		
						Gall	ons/Foot			Field	d Equ	ipmen	t: YSI, D	edica	ated Low-f	low					
Well Dia	ameter	(inches)	= 2	0.75	5	2	4		6	Purç	ge Me	thod:	Micropur	ge							
F - Gallo	ns per	foot of	casing	0.02	2 (.16	0.65		1.47	Wel	I Con	dition:			60	va					
Time		Control ettings	ler Pt	olume urged iters)	Flow R (mL/mi		Water Level (ft-bmp)		mperature (°C) [+/- 10%]		nduc (mS/ci [+/- 10	m)	Dissolv Oxyge (mg/L [+/- 109	en)	pH [+/- 0.1 pl	.,	ORP (mV) /- 10%]	Turbidity (NTU) [+/- 10%]	Observations		
			Previo	us Stabili	zed Para	mete	rs: 09-11-09		24.09		0.71		0.140		8.02		- 2.00	2.09			
1057	10000	P /501/		75	250		63.77		3.22		0.7		1.04		7.39	-	1969	6.70			
1059		e quantitati	2	15	Department,		63.80	2	-3.19		0.7	75	6.6	6	7.40		2054				
HOF 1101				75			63.82		3-25		2.7	'4	04		735		211-9	3.83			
1404 1103				25			53.82		-3.37		0.7	3	043	>	7:29		14.5	4.01			
1105			3	.75	Ů.	······	63.82	-	23.17	6	7.7	}	0.47	<u></u>	7,27	· 2	15.0	3.72			
Purge Start Time	Pu	ırge Enc Time	l F	erage low ./min)	Total Volum Purge (Liters)	e d	Total Casing Volumes Purged	80'	% Recover Level De (Dx0.20)	pth		Sampli (ft	Level at ing Time bmp)		Sample ollection Time	Sample Identification					
1050		1105	25	0	3.79	5	N/A		NA			63.	४८		1106	MWG002_WG201003 2 6 _01					
Notes: (unit				a]				Field	Parameter	's						JP:					
Purging will of consecutive stabilization	meası		hin	Ferrous	Iron NM		Р	PID (ppm):			NM	1		DRUM N	10:						

	TRONMENTAL, IN									212 8	4 2040		
Project Nam	e: Boeing	C-6 Facility,		ual Sampling, N	viar-10		Date:	h		316	5 / 2010		
Project No.:			1155.010				Prepared Weather:		Ben 5.				
Well Identific			MWG003				vveatner: Pump Int	A 1970	9.5		Screen:	154.5 - 18	4 5
	t Point Descript	ion:	TOC						H		Joreen.	J	K = H x I + J
Α	В		C	D = C - B	E =	= B - A		G	Н		Tubing	J	K-HXIT3
Depth to LNA (ft-bmp)	PL Depth to Sta Water Lev (ft-bmp)	el [il Total Depth t-bmp)	Water Colum Above Pump Intake(ft)	_ LN	NAPL (ness (ft)	Dia	bing meter in)	Tubing Volume (Liter/foot	:)	(feet)	Flow Cell Volume (Liters)	Initial Purge Volume (Liters)
NM	61.63	/	35	123.37	~ m	1		1/4	0.0054	/	59.5	0.8	1.72
			Ga	illons/Foot		Field	Equipmer	nt: YSI, De	edicated Lo	ow-flov	N		
Well Dia	imeter (inches) = 2	0.7	75 2	4	6	Purge	e Method:	Micropurg	е				
F - Gallon	ns per foot of casi	ng 0.0	0.16	0.65	1.47	Well	Condition	1-00	sel				
Time	Flow Controller Settings	Volume Purged (Liters)	Flow Rate (mL/min)	Water Level (ft-bmp)	Temperature (°C) [+/- 10%]	(r	ductivity nS/cm) -/- 10%]	Dissolve Oxyge (mg/L) [+/- 10%	n p [+/- 0	H .1 pH]	ORP (mV) [+/- 10%]	Turbidity (NTU) [+/- 10%]	Observations
28 a	Р	revious Stab		ters: 09-10-09	24.88		0.81	0.160	9.	75	-366.00	0.77	
	95 AST/50-1100 LL	1.75	250	61.63	21.58	0:		107		<u>64</u>	-/77.6		
12837	-	2.25		61.63	21.60	0	. 6 0	0.86		122	-166.8	9.54	
0339	000000000000000000000000000000000000000	2.75		61.63	21.59	0	· 8 8	0.73		94	-1584	9.37	
0841	TO COURT FOR STATE OF	3.75		61.63	21.63	0	· S/	0.75		67	-/47.9	8.00	
0843		3.75	and the state of t	61.63	21.67			0.40		56	-1410	3.18	
0845	Grand Control of the	4.75		61.63	21.73		-0340				-137.1	3.02	
0847	V	4.75		61.63	21.7	3 6	98, 0	0.41	7.	<u>50</u>	-1369	7.98	
Purge Start Time	Purge End Time	Average Flow (mL/min)	Total Volume Purged (Liters)	Total Casing Volumes Purged	80% Recove Level D (Dx0.20	epth	Samp	r Level at ling Time t bmp)	Samp Collect Time	ion		ample Identi	
0259	0847	250	4.75	N/A	NA.	4	61.	<u>δ3</u>	08		J	WG201003	<u> </u>
Notes: (unit	s) [stabilization o	riteria]	1 1 1	1.9	Field Paramet	ers				DUI			
Purging will	continue until thre measurements a	ee	Ferrous In		PID (ppm):		NI	M	DRU	IM NO):		4

	TRONMENTAL, IN						······································	1				** / OO / O		
Project Name	e: Boeing	C-6 Facil			al Sampling, N	/lar-10		Date:				26/2010		
Project No.:				155.010				Prepa			P15			
Well Identific				IWG004				Weath			104	T =		
Measuremen	t Point Descript	ion:	$I^{\mathfrak{g}}$	ر کی				Pump		ke: / 70	2 '	Screen:	155 - 18	
A	В		С		D = C - B	E	= B - A		G		Н	ı	J	K=HxI+J
Depth to LNA (ft-bmp)	PL Depth to St Water Lev (ft-bmp)		Well To Dept (ft-bm	th	Water Columi Above Pump Intake(ft)		NAPL (ness (ft)	Tubi Diame (in	eter	Tubing Volume (Liter/foot)	Tubing Length (feet)	Flow Cell Volume (Liters)	Initial Purge Volume (Liters)
NM	60.79		186	7	196 125	21 /	Ч		1/4	1	0.0054	170	08	1.7/
				,	ons/Foot		Fiel	d Equipr	ment:	YSI, De	dicated Low-	flow		
Well Dia	meter (inches) = 2		0.75	2	4	6	Pur	ge Meth	od: N	/licropurge)			
F - Gallor	ns per foot of casi	ng	0.02	0.16	0.65	1.47	Wel	II Condit	ion:	6-00				
Time	Flow Controller Settings	Volum Purge (Liters	d '	Flow Rate (mL/min)	Water Level (ft-bmp)	Temperatur (°C) [+/- 10%]		onductivi (mS/cm) [+/- 10%]	-	Oxygen (mg/L) [+/- 10%]	p H [+/- 0.1 p	ORP (mV) [+/- 10%	(NTU)	Observations
4	F	revious S	tabilize	ed Paramete	rs: 09-10-09	23.80		0.57		0.370	9.84	-359.0		
	15/51/50, 1100 ft	1.75		750	60.83	17.12		<u> 9.83</u>		1.25	7.45		0 23.5	
0742		2.25		Westerlieben v	60.85	18.16		0.63		1.04	7,28		12.4	
0744	-ogiopola.	2.75			60.85	19.29		0.62		1.00	7.39			
6746	OPERITOR	3.25		9990 Francisco	6035	2004		0.62		0.96	7.57	-98		
0748	Control of the Contro	3.75			60.85	2018		<u>0-63</u>		0.90	767			
0750	ouzuptte nakki	4.25		and the second	60.85	2040		0.63		0.65	7.74	-//2.		
0752	Microsephile	4.7	5		62 33	20.43		0 69	7	0,56	7.78		240	
0754		5.25	5		60.85	20.44	. (0.67		0.55	7.8	0 - 170		
0756		5.7		V	6035	20.45		2.67		0.53	7.81	-1206	2.18	
Purge Start Time	Purge End Time	Averag Flow (mL/mir		Total Volume Purged (Liters)	Total Casing Volumes Purged	80% Recov Level I (Dx0.20	Depth	iter W	mplin (ft b	. ,	Sample Collection Time		Sample Identi	ification
0733	0756	250		5175	N/A	N/	4		00	-85	0757		4_WG201003	2601
	s) [stabilization of				F	ield Paramet	ers			7-		UP:		
Purging will o	continue until thre measurements a	ee		Ferrous Iron NM		PID (ppm): <i>O</i> , (NM		DRUM	NO:		

Project Nam	O: Pacina		a cilitar C	Citourid	. Annu	al Sampling,	Mor 10			Date:			217	² √ / 2010		
Project No.:	e. boeing	U-0 F2	acility, 3	1155.		iai Sampiing, i	viai-10			Prepared	by:		>M	2010		
Well Identific	ration:			TMW						Veather:)1. (V N Y			
	nt Point Descrip	tion:	TA	L N	_00	······································				Pump Int			*	Screen:	67 - 87	•
A	В	1011.		C 114		D = C - B		E = E		<u> </u>	G		Н	1	J	K = H x I + J
Depth to LNA (ft-bmp)	Donth to St		Well De	Total epth emp)	,	Water Colum Above Pum Intake(ft)		LNA		Tul Diar	bing neter in)	1	Tubing Volume Liter/foot)	Tubing Length (feet)	Flow Cell Volume (Liters)	Initial Purge Volume (Liters)
NA	58.81		8.	7		i &		۱۶	ł	1	/4		0.0054	90	6.75	1.25
					Gall	lons/Foot			Field E	Equipmen	ıt: YSI,	Porta	able Low-flow	v		
Well Dia	ameter (inches) = 2		0.75	;	2	4	6		Purge	Method:	Micropu	rge				
F - Gallo	ns per foot of casi	ing	0.02		0.16	0.65	1.47		Well C	ondition:	Go	Ø				
Time	Flow Controller Settings	Pur	ume ged ers)	Flow (mL/		Water Level (ft-bmp)	Tempera (°C) [+/- 10		(m	ductivity S/cm) - 10%]	Dissol Oxyg (mg/l [+/- 10	en L)	pH [+/- 0.1 pH	ORP (mV) [+/- 10%]	Turbidity (NTU) [+/- 10%]	Observations
	F	revious	s Stabili	zed Pa	ramete	ers: 03-10-09	20.4	5	,	1.68	4.85		7.10	-20.00	198.00	
0753	50 psi	125	50	25	50	58.84	19.9	9	1	.763	4.4	Ì [8.37	197.8		
0756	50 psi	20	60	25	50	58.85	20.	380	diame.	768	4.3		7.87	199.		
0759	50 psi	27	20	25	Ö	58.87	20.7	3_	1.	751	4.19		7.76	201.7	93	
0902	50 psi	35	500	25	0	58.67	20.0	24	1.	745	H.i		7.81	202.	7 85	
0805	50 051	42	50	25		59.47	20.3		ĺ."	732	4.0		7:21	204.1	9 4	
0808	50 psi	-	00	25		58.87	20.3	6		728	4.1		7.74	204.5		
0911	50 psi	5	750	25	8	58.87	20.4	(C	***************************************	776	4.0	5	7.76	204.0	»	
Purge Start Time	Purge End Time	Avera Flo (mL/r	w	Tot Volu Purg	me ed	Total Casing Volumes Purged		overy el Dep	oth	Sampl	Level at ing Time		Sample Collection Time		Sample Identi	fication
0748	0820	25	50	Û		N/A		NA		58	.87		0813	TMW_06	_WG201003	2식 _01
Notes: (unit Purging will o	s) [stabilization of continue until thre measurements a	e		Ferro	us Iron NM	(mg/L)	Field Parar PID (ppr	n):	5	NN	/1		DU DRUM N			

Project Nam	ronmental, IN Boeina		ilitv. Sitev	vide Annua	al Sampling, M	lar-10		Dat	te:			3/2	4/2010		
Project No.:				55.010				Pre	pared	by: Be	, 5.				
Well Identific	cation:		TN	IW_07				We	ather:	5	nny				
	nt Point Descript	ion:		TOC				Pu	mp Inta				Screen:	65 - 85	•
A	В		С		D = C - B	E	= B - A		(3	H	1		J	K=Hxl+J
Depth to LNA (ft-bmp)	PL Depth to Sta Water Lev (ft-bmp)		Well Tot Depth (ft-bmp)		Nater Columr Above Pump Intake(ft)	L	NAPL kness	(ft)	Dian	neter	Tub Volu (Liter	ıme	Tubing Length (feet)	Flow Cell Volume (Liters)	Initial Purge Volume (Liters)
NM	60.84		91		30.16	N	M		1	/4	0.0	054	75	0.8	1.2
Ψ	e/ - 3		- 1	Galle	ons/Foot		Fie	ld Eq	uipmen	t: YSI, D	edicate	ed Low-flo)W		
Well Dia	ameter (inches) = 2		0.75	2	4	6	Pu	rge M	ethod:	Micropurg	е				
F - Gallo	ns per foot of casi	ng	0.02	0.16	0.65	1.47	We	ell Cor	ndition:		b	ouch			
Time	Flow Controller Settings	Volun Purge (Liters	ed Fi	ow Rate mL/min)	Water Level (ft-bmp)	Temperatu (°C) [+/- 10%]	re C	ondu (mS/c [+/- 1		Dissolv Oxyge (mg/L) [+/- 10%	n	pH [+/- 0.1 pH	ORP (mV) [+/- 10%	Turbidity (NTU) [+/- 10%]	Observations
	P	revious S	Stabilized	Paramete	rs: 09-10-09	22.82		1.6	6	6.110		7.10	39.00	53.00	
0731	4082/50./10: F	1.25	5 7	50	60.86	20.59		1.5	9	500		7.02	143.	6 15.3	
0733	1	1.75			60.86	20.84	7	1.6	l	5.00	}	7-02	139.0	· · · · · · · · · · · · · · · · · · ·	
0 734	and the second s	225	9	and constituted	6086	20.90			62	5.0		7.03	135,		
0736		279	5		60.86	20.9			62	5.09		7.04	131.6		
0738	gorapada	3.25			60.86	21.01			62	4.9		7.04			
0740	<u> </u>	3.7	5		90.86	21.04		<u> </u>	62	5.00	>	7.04	123.8	12.2	
Purge Start Time	Purge End Time	Averaç Flow (mL/mi	ge / in) P	Total folume furged (Liters)	Total Casing Volumes Purged	80% Recov Level I (Dx0.2	Depth	ater	Sampl	Level at ling Time bmp)	Co	ample Ilection Time		Sample Identi	
0726	0740	250	3.	75	N/A	N.	A		60	1.86	U.	741		_WG201003	2 Y _01
	ts) [stabilization o	riteria]			F	ield Parame	ters					DU			
	continue until thre measurements a criterion.			errous Iron NM		PID (ppm):	MCCA004707577777777777777777777777777777777		NN	Л		ORUM N	O:		

	VIRONMENTAL, IN			*.t. A	-1 O l' N		1	Date:			219	-3 / 2010		
Project Nam	e: Boeing	C-6 Fac		wide Annu 55.010	al Sampling, I	viar-10		Prepared	l bye	DM	312	-3 / 2010		
Project No.: Well Identifi				1W_08				Weather:	•	NUY				
	cation. nt Point Descript	lion:	tol.					Pump Int		71		Screen:	61 - 81	
WI :	B B	1011.	C		D = C - B		= B - A		G	H		1	J	K = H x I + J
Α	5				D = C - B	E	= B - A		G			Tubing		K-IIXI.3
Depth to LNA (ft-bmp)	Depth to St Water Lev (ft-bmp)		Well Tot Depth (ft-bmp)		Water Colum Above Pump Intake(ft)	LI	NAPL kness (f	, Dia	bing meter (in)	Tubi Volu (Liter/f	me	Length (feet)	Flow Cell Volume (Liters)	Initial Purge Volume (Liters)
NA	60.57		81		10	*	JA		1/4	0.00	54	80	0.75	1.2
				Gall	lons/Foot		Field	d Equipmer	nt: YSI, P	ortable l	_ow-flow	/		
Well Dia	ameter (inches) = 2		0.75	2	4	6	Purg	ge Method:	Micropur	ge				
F - Gallo	ns per foot of casi	ng	0.02	0.16	0.65	1.47	Well	l Condition	: 4 00	D				
Time	ne Flow Controller Settings Volume Purged (Liters)			ow Rate mL/min)	Water Level (ft-bmp)	Temperatur (°C) [+/- 10%]		nductivity (mS/cm) [+/- 10%]	Dissolv Oxyge (mg/L [+/- 10°	en) [+	pH /- 0.1 pH	ORP (mV) [+/- 10%]	Turbidity (NTU) [+/- 10%]	Observations
I	F	revious	Stabilized	Paramete	ers: 03-16-09	22.40		2.01	3.950		7.10	-89.00	69.90	
1316	60 ps.	1:2	اد	400	60.59	22.66		2.336	0,99	5 .	7.22	113.6	44	
1319	& C ps;	2.4	į (400	60.58	22.52	2	301	0.70		7.22	106.6		
1322	60 ps:	3.6	2 4	400	60.59	22.48	2	. 275	0.77		.22	103.4		
1325	60 ps;	4.8	,	400	60.59	22.45		. 239	0.69		,21	98.4		
1328	60 psi	6.0	€.	(১૭	60.59	22.39	2	.216	0.63		1.20	95.6	9	
1331	60 ps:	7.2		400	60.58	22.41	2	.,205	0.65		1.21	94.6	7	
1334	60 psi	8.4	•	400	60.59	22.42	2	.203	0.63	1	.20	92.7	<u> </u>	
				Total	Total	80% Recove	om: \N-4	Wets.	r Level at	Qa.	mple			
Purge Start Time	me Time riow Purged Volumes (mL/min) (Liters) Purged						ery wat Depth)) + B 	Samp (fi	ling Time t bmp)	Colle	ection me		Sample Identi	
1313	1340	400		9	N/A	N/	4	60	.59	139			WG201003 🖇	23 _01
	s) [stabilization o				F	ield Paramet	ers				DU			
consecutive	urging will continue until three onsecutive measurements are within abilization criterion.			errous Iron NM		PID (ppm):		Ni	M	DI	RUM N	O:		

Project Nam	e: Boeing	C-6 Fac	cility, Sitev	vide Annu	al Sampling, N	/lar-10		D	ate:			3/2	6/ 2010			
Project No.:			115	55.010				Р	repared	by:	DM					
Well Identific	cation:		TM	W_10				N	/eather:	Ś	"UMN	4				
Measuremer	nt Point Descrip	tion:	TOC	N				Р	ump Inta	ake:	70.	5	Screen:	60.5 - 80	.5	
А	В		С		D = C - B		E = B ·	- A		3		1	XX.	J	K=HxI+J	
Depth to LNA (ft-bmp)	PL Depth to Si Water Lev (ft-bmp)	vel	Well Tot Depth (ft-bmp)		Water Colum Above Pump Intake(ft)		LNAP hicknes		Dian	oing neter n)	Vol	oing ume -/foot)	Tubing Length (feet)	Flow Cell Volume (Liters)	Initial Purge Volume (Liters)	
NA	56.82	_	80.5				NA		1	/4	0.0	054	90	0.75	2.2	
				Gall	lons/Foot		Į į	Field E	quipmen	t: YSI, E	Dedicate	ed Low-flo	ow			
Well Dia	nmeter (inches) = 2		0.75	2	4	6		Purge	Method:	Micropur	ge					
F - Gallo	ns per foot of cas	ing	0.02	0.16	0.65	1.47	'	Well C	ondition:	G٥	C >>					
Time	Time Flow Controller Settings Volum Purge (Liters			ow Rate nL/min)	Water Level (ft-bmp)	Tempera (°C) [+/- 10	.	(ms	uctivity S/cm) 10%]	Dissolv Oxyge (mg/L [+/- 10	en .)	pH [+/- 0.1 pH	ORP (mV) [+/- 10%]	Turbidity (NTU) [+/- 10%]	Observations	
	F	Previous	Stabilized	Paramete	ers: 09-09-09	23.60	0	2	.03	2.790	0	8.95	-51.00	2.42		
0951	65 psi	1.2	- 3	200	56.90	22.7	29	2.	410	2.4		7.17	100.6	. 17		
0954	65 psi	2.1	3	, D C	56.90	22.19	9	2.	413	2.1		7.19	101.6	11		
0957	65 P51	3-0	3	00	56.91	22.2			13	2.11		7.20	102.8			
1000	65 psi	3.9		60	56.91	22.2	3	2.4		2.16		7.22	103.4	5		
1003	65 psi	4.8	\$ \$	500	56.91	224	2	2,5	(17	2.1	7 *	7-22	103.9	E		
Purge Start Time	Purge End Time	Avera Flov (mL/m	w P	Total olume urged Liters)	Total Casing Volumes Purged		covery el Dept 0.20) + E	:h	Sampli	Level at ing Time bmp)	Co	ample Ilection Time	ion Sample Identification			
6947	1023	300	ב	5	N/A		NA		56	.91	i	205	TMW_10_	_WG201003	26 _01	
Notes: (unit					F	ield Paraı	meters					DU				
consecutive	otes: (units) [stabilization criteria] urging will continue until three onsecutive measurements are within abilization criterion.				(mg/L)	PID (ppi	m):		NM	1		ORUM N	O:			

Project Name	IRONMENTAL, IN		acility 9	Sitewid	e Annu	al Sampling, I	Mar-10	******		Da	te:			3 / 3	26/2010		
Project No.:	z. Doeing	0-016	acinty, c	1155.		ai Camping, i	viai 10				pared	bv:	Ð1				
Well Identific	ation:			TMW						_	ather:		NN				
	t Point Descript	ion:	70	C, N						ļ	mp Inta		උ රි		Screen:	58 - 78	3
Α	В			C		D = C - B		E =	B - A		(G	************	Н	1	J	K = H x I + J
Depth to LNA (ft-bmp)	PL Depth to St Water Lev (ft-bmp)		De	Total pth omp)		Water Colum Above Pum Intake(ft)			APL ness (f	ft)	Dian	oing neter n)	Vo	ubing blume er/foot)	Tubing Length (feet)	Flow Cell Volume (Liters)	Initial Purge Volume (Liters)
ŅΑ	57-08		7	ફ				٨	AC		1	/4	0.	0054	90	0.75	1-2
					Gall	ons/Foot	***		Field	d Eq	uipmen	t: YSI, D	edica	ited Low-flo	ow		
Well Dia	meter (inches) = 2		0.75		2	4		6	Pur	ge M	ethod:	Micropur	ge				
F - Gallor	ns per foot of casi	ng	0.02		0.16	0.65	1.	.47	Wel	l Cor	ndition:	Ġ,	900				
Time	Time Flow Controller Settings Volum Purge (Liters				Rate min)	Water Level (ft-bmp)	•	perature (°C) /- 10%]		ndu (mS/c [+/- 1	ctivity cm) 0%]	Dissolv Oxyge (mg/L [+/- 10°	en)	pH [+/- 0.1 pH	ORP (mV) [+/- 10%	Turbidity (NTU) [+/- 10%]	Observations
	F	reviou	s Stabili	zed Pa	ramete	ers: 09-09-09	2	23.24		1.5	51	4.240)	8.82	26.00	0.98	
0907	60 psi	1	4	35	O	57.12	2	(-4°7	9	8	39	3.9		6.15	96.7	25	
0910	60 ps.	2.	.5	35	0	57.13	21	1.77	l	.8	52	3.71		6.37	98.6	11	
0913	60 psi	3.	5	35	- 0	57.13		. % 6	ì	. 89	53	3.76		6.52	100.9		
0916	60 psi	-	, Q	35	Ö	57.13	21	1-89		. 8 9		3.6	1	6,65	101.8		
0919	60 psi	รั	Ÿ.	351	٥	57.12	21	.93		. 85		3.71		6.64	103.0		
0922	60 psi	6:	7	35	0	57.12	21	.91		. % 5	ં જે	3.73	·	6.70	103.8	Ą	
Purge Start Time	Time Time Flow (mL/min) Purged (Liters)				ıme ged	Total Casing Volumes Purged		Recove Level De (Dx0.20)	epth	ter	Sampl	Level at ing Time bmp)		Sample ollection Time		Sample Ident	ification
0903	0926	0	1		N/A		NA			57	.12	Ĉ	923	TMW_11	_WG201003	2E _01	
Notes: (unit	Notes: (units) [stabilization criteria]						ield P	aramete	ers			,			JP:		
Purging will o	otes: (units) [stabilization criteria] urging will continue until three onsecutive measurements are within abilization criterion.			Ferr	ous Iron NM			(ppm):			NN	1		DRUM N	lO:		

Project Nam	e: Boeing	C-6 Faci	ilitv. Site	vide Annu	al Sampling, M	ar-10		Da	te:			3/2	5 / 2010		
Project No.:	J.	,		55.010				Pre	pared	by: 🐧)m				
Well Identific	cation:		TN	IW_14				We	ather:	cl.	osd.	4			
	nt Point Descrip	tion:	TOC,					Pu	mp Inta		~7		Screen:	65 - 8	5
Α	В		С		D = C - B	E	= B - A		(3		Н	Edward	J	$K = H \times I + J$
Depth to LNA (ft-bmp)	PL Depth to S Water Le	vel	Well To Depth (ft-bmp		Water Columr Above Pump Intake(ft)	1	LNAPL ckness ((ft)	Dian	oing neter n)	V	ubing olume ter/foot)	Tubing Length (feet)	Flow Cell Volume (Liters)	Initial Purge Volume (Liters)
NA	66.30		45		q				1	/4	0	.0054	80	0.75	1.2
	<u> </u>			Gall	ons/Foot		Fie	ld Eq	uipmen	t: YSI, D	edic	ated Low-flo	ow .		
Well Dia	ameter (inches) = 2		0.75	2	4	6	Pur	ge M	ethod:	Micropur	ge				
F - Gallo	ns per foot of cas	ing	0.02	0.16	0.65	1.47	We	II Co	ndition:	Goo					
Time	Flow Controller Settings	100	ow Rate mL/min)	Water Level (ft-bmp)	Temperatu (°C) [+/- 10%]		ondu (mS/ [+/- 1		Dissolv Oxyge (mg/L [+/- 10°	en .)	pH [+/- 0.1 pH	ORP (mV) [+/- 10%	Turbidity (NTU) [+/- 10%]	Observations	
		Previous :	Stabilized	Paramete	rs: 09-10 - 09	22.24		2.6	31	5.550		8.97	58.00	2.22	
0742	66 psi	1.2	2	465	6632	21.66	e	3.0	30	5.2	7	6.60	215.1		
0745	le le psi	2.4	l	400	66.32	21.6		3. 6	15	5-4		658	215.		
0748	66 psi	3.6	>	400	6632	21.70		3, 0	09	5.3		6.68	215.0		
0751	66 psi	4.8	à	400	66.32	21.71	1	3 - 0		5.39		6.70	216.4		
0754	66 ps:	6.0)	400	66.32	21.70		2.9	97	5 -3	0	6.72	216.0	5	
Purge Start Time	Purge End Time	Avera Flow (mL/mi	w F	Total olume ourged (Liters)	Total Casing Volumes Purged		overy Wa I Depth 20) + B	ater	Sampl	Level at ing Time		Sample Collection Time		Sample Ident	ification
0739	0757	400		(Liters)	N/A	<u> </u>	NA A		فاعا	,32	-	2756	TMW_14	_WG201003	25 _01
				*		ield Param	eters	***************************************				DU			
Purging will consecutive	otes: (units) [stabilization criteria] urging will continue until three consecutive measurements are within tabilization criterion.			errous Iron	(mg/L)	PID (ppm			NN	Л		DRUM N	O:		

Project Name	IRONMENTAL, IN		cility Sit	- wide Δηημ	al Sampling, N	//ar-10		Da	te:			3/2	5 / 2010		
Project Name	e. Boeing	C-0 Fa		155.010	ai Camping, i	viai 10			pared	bv:	DM				
Well Identific	ation:			MW 15					ather:		ಶಿಲಬೆಳ				
	t Point Descript	ion:	Tic						mp Inta		75		Screen:	62 - 87	•
A	В		C		D = C - B	E	= B - A		(G	Н		ı	J	K = H x I + J
Depth to LNA	Denth to St		Well T Dep	th	Water Colum Above Pump Intake(ft)	, L	NAPL kness	(ft)	Dian	oing neter n)	Tubii Volur (Liter/f	ne	Tubing Length (feet)	Flow Cell Volume (Liters)	Initial Purge Volume (Liters)
NA	64.54	<i>i</i>	87)	10		NA		1.	/4	0.00	54	90	0.75	1.2
					ons/Foot		Fie	ld Eq	uipmen	t: YSI, De	edicated	Low-flo	w		
Well Dia	meter (inches) = 2		0.75	2	4	6	Pu	rge M	ethod:	Micropurg	9				
F - Gallor	s per foot of casi	ng	0.02	0.16	0.65	1.47	We	II Co	ndition:	Go:	, D				
Time	Time Flow Controller Settings Volume Purged (Liters)			Flow Rate (mL/min)	Water Level (ft-bmp)	Temperatu (°C) [+/- 10%]		ondu (mS/ [+/- 1		Dissolve Oxyge (mg/L) [+/- 10%	ו [+	pH - 0.1 pH]	ORP (mV) [+/- 10%]	Turbidity (NTU) [+/- 10%]	Observations
<u> </u>	F	revious	Stabilize	ed Paramete	rs: 09-10-09	22.18		1.4	14	5.480		9.44	-35.00	0.51	
0831	60 psi	ì.	2	400	64.80	20.3		1.6	27	4.80		7.33	215.2		
0834	50 ps.	2.	, 4	300	64.76	20.68		1.6	18	4.70	•	7.32	2145	20	
0837	50 ps;	3.	ا ۵۔	300	64.75	20.60	<u> </u>	1.6	17	4.77		1.25	213.8	13	
0840	50 psi	3.		300	64.76	20.65			18	4.70		7.20	213.7	1	
0843	50 ps	4,	. ધ	300	6476	20.54		1.6	16	4.68		19	213.6	9	
0846	50 psi	5.		300	64.76	20.59			15	4.69	/	-19	213.4	6	
6849	50 psi	6.	İe	300	64.76	20,58		<u>(. </u>	15	4.72	. "	2.19	213.7	5	
Purge Start Time	ne Time Plow Purged Volumes (Liters) Purged					80% Recor Level (Dx0.2	very Wa Depth 20) + B	ater	Sampl	Level at ing Time bmp)	Colle Ti	nple ection me		Sample Identi	
0828	0905	30	0	7	N/A	N	IA		6	1.76	08			WG201003	25 _01
Notes: (unit	s) [stabilization o					Field Parame	eters					DU			
consecutive	otes: (units) [stabilization criteria] urging will continue until three onsecutive measurements are within abilization criterion.			Ferrous Iron		PID (ppm)	:		NN	Л	DI	RUM NO	O:		

Project Nam	VIRONMENTAL, IN		Sitewide	Annua	al Sampling, M	1ar-10		Da	ate:			3 / 2	<u>کا 2010</u>		
Project No.:	C. Booking	O O I domey	1155.0		ar ourripining, it	10			epared	bv:		DML	,		
Well Identific	cation:		WCC 0						eather:		out	, cail			
Measuremer	nt Point Descript	tion:	700	- N	1			Pı	ımp Int		79	- g	Screen:	69 - 89)
Α	В		С		D = C - B	E	= B - A			G		Н	I	J	K=HxI+J
Depth to LNA (ft-bmp)	PL Depth to St Water Lev (ft-bmp)	/el	ell Total Depth ft-bmp)		Vater Colum Above Pump Intake(ft)		NAPL kness	(ft)	Dia	bing meter in)	٧	ubing olume ter/foot)	Tubing Length (feet)	Flow Cell Volume (Liters)	Initial Purge Volume (Liters)
NM	59.35		89		20'	N	1		1	1/4	C	.0054	82	0.75	1.19
				Gallo	ons/Foot		Fie	ld E	quipmer	nt: 4%[,[Dedic	ated Low-f	flow Q E.	Ø MP ZO	
Well Dia	ameter (inches) = 4	0.	75	2	A	6	Pu	rge N	/lethod:	Micropur	ge				
F - Gallo	ns per foot of casi	ing 0	02 ().16	0.65	1.47	We	II Co	ndition:	. <i>5</i> /	ost.				
Time	Time Flow Controller Settings Volum Purge (Liters				Water Level (ft-bmp)	Temperatu (°C) [+/- 10%]	re C	(mS	uctivity Jom) 10%]	Dissol Oxyg (mg/l [+/- 10	en -)	pH [+/- 0.1 pi	ORP (mV) [+/- 10%	Turbidity (NTU) [+/- 10%]	Observations
	F	revious Sta	oilized Para	meter	rs: 09-11-09	23.53			62	0.59	0	6.68	-159.00		
10:20	50/5: 10/5	1.2	200	2	59.35	22.30		4.1		0.3		6.3			Clear
10:23	e.	1.8	200		59.42	22,32		41		0,2	4	6.33		Z.88	
10:26	le	2.4	200		59.45	27.36		4,1	0	0.13		6.34	-152		4
10:29	£ 1	3.0	200		59.49	22.37		4.0		0.16		6.36	-152		
10:32	ic	3.6	200		59.49	22.39	٤	1.0	9	0.16		6.36	- 15 5	2.03	
Purge Start Time	Total Volum Purge (Liters	e d	Total Casing Volumes Purged	80% Recov Level I (Dx0.20	Depth	ater	Samp	Level at ling Time	1	Sample Collection Time		Sample Identi	fication		
10:20	10:32	200	3.6		N/A	N	4		59.	49	1	0:35		S_WG201003	25_01
	s) [stabilization o				F	ield Parame	ters						UP:		
consecutive	otes: (units) [stabilization chiena] urging will continue until three onsecutive measurements are within rabilization criterion.			s Iron (NM	(mg/L)	PID (ppm):			NI	Л		DRUM	NO:		

Project Nam	/IRONMENTAL, IN		cility. Si	tewide Annu	ıal Sampling, N	//ar-10		Date	 e:			3/2	√ / 2010	***************************************	
Project No.:	<u> </u>	00.0		1155.010	ar oampinig, n				oared l	by: &	en 5.				
Well Identific	cation:		V	VCC_04S					ther:		0114				
Measuremer	nt Point Descrip	tion:		TUL				Pum	p Inta		30.51	,	Screen:	70.5 - 90	.5
А	В		С	;	D = C - B	E	= B - A		G	;	Н		ı	J	K=HxI+J
Depth to LNA (ft-bmp)	PL Depth to St Water Lev (ft-bmp)	/el	Well T Dep (ft-br	oth	Water Columi Above Pump Intake(ft)	L	NAPL kness (ft)	Tub Diam (in	eter	Tubir Volur (Liter/fo	ne	Tubing Length (feet)	Flow Cell Volume (Liters)	Initial Purge Volume (Liters)
NM	28.8	8	92		3312		V m		1/-	4	0.005	54	8256	0.8	12
			-	· · · · · · · · · · · · · · · · · · ·	lons/Foot		Fiel	d Equi	ipment	: YSI, D	edicated	Low-flo)W		
Well Dia	imeter (inches) = 4		0.75	2	4	6	Pur	ge Met	thod: N	Micropurg	е				
F - Gallo	ns per foot of cas	ing	0.02	0.16	0.65	1.47	Wel	I Cond	dition:	6-000	1				
Time	Time Flow Controller Settings Volum Purge (Liters)			Flow Rate (mL/min)	Water Level (ft-bmp)	Temperatur (°C) [+/- 10%]		nduct (mS/cm [+/- 10%	n)	Dissolv Oxyge (mg/L) [+/- 10%	n [+/	pH /- 0.1 pH]	ORP (mV) [+/- 10%]	Turbidity (NTU) [+/- 10%]	Observations
	F	revious	Stabiliz	ed Paramete	ers: 09-11-09	23.86		2.13		3.250		6.94	81.00	3.20	
1503	50 1-2/5-2/10=14	1.2	5	250	5890	2301		2.12		3.99		3.86	17/9	2.28	
1510		1.7	5		5892	2301	l	2.19		308	6	81	-71.8	1.88	
1512		2-2	<u> </u>		5892	22.98		2 25		2.58		.78	-72.4	2.03	
1514		27	'S		58.92	23.06		2.25		2.39	L (2.77	- t	2.04	
1516		3.7			38.92	23.04		2.30		2.33		76	-72.5	2.05	
15/3		3.7	75		58-92	23-05		2.27	3	2 29		276	- 72.3	1.98	
															**
Purge Start Time	Time Time Purged (Liters) Purged (Dx0.20) + B (ft bmp) Time Officeror Time						Sample Identi	fication							
1503	1513	250		3.75	N/A	N	4		58	92	151	9	WCC_049	S_WG201003	24 _01
Notes: (unit	s) [stabilization o				F	ield Parame	ters					DU			
consecutive	otes: (units) [stabilization criteria] orging will continue until three onsecutive measurements are within abilization criterion.			Ferrous Iron		PID (ppm):			NM		DF	RUM NO	O:		

Project Nam	e: Boeing	C-6 F	acility,	Sitewide	e Annu	al Sampling	, Mar-10	Da	ıte:			3/22	/ 2010		
Project No.:				1155.0	010			Pr	epared	by: 🚜	<u> </u>				
Well Identifi	cation:			WCC_	05S			W	eather:	Pallk	1 610	uchy			
Measureme	nt Point Descript	ion:		TOC				Pι	ımp Inta	ıke: 🦯	61		Screen	ı: 61	- 91
А	В		С		D =	= C - B	E = B - A	G		Н			l daged	J	$K = H \times I + J$
Depth to LNAPL (ft-bmp)	Depth to Static Water Level (ft-bmp)		Well To Depth (ft-bmp	1		Column ght (ft)	LNAPL Thickness (ft)	Tub Diam (ir	eter	Tubir Volun (Liter/fo	ne		Length eet)	Flow Cell Volume (Liters)	Initial Purge Volume (Liters
-	59.33		91		3(-	67	-	1/	4	0.005	54	70	5	080	1.2
					Gall	ons/Foot		Field Ed	quipmen	t: QED, P	ublic Par	king Lot	t		
Well Di	ameter (inches) = 4		0.75	5	2	4	6	Purge N	lethod:	Micropurge)				
F - Gallo	ns per foot of casi	ng	0.02	2	0.16	0.65	1.47	Well Co	ndition:	60	od				
Time	Flow Controller Volume				Rate min)	Water Level (ft-bmp)	Temperature (°C) [+/- 10%]		ictivity /cm) 10%]	Oxygen (mg/L) [+/- 10%]	[+/-	pH 0.1 pH]	ORP (mV) [+/- 10%]	Turbidity (NTU) [+/- 10%]	Observations
	Previous Stabi	ized	Paramet	ers: 9/9	/2009	10:02:00 AN	22.88	1.	43	4.460		3.77	9.00	0.81	
1439	45151/50/1004	1.	2	200		5235	22.04	2.4	91.44	5/3/	7	01	-2.7	4.68	
1442			7			5437	22.31		1.49	4.77	6	43	012	309	
1444		2	2			5937	2243	1.	51	4.46		2-90	1-0	218	
1447		2.	7			59.37		1.	5 Z	4,29		289	1.6	1.83	
1449		3.2	-			59.32	72.61		.53	4.25		-88	1.6	1.75	
1452		3.	7			59.37	22.70	1.3	3	4,20	6	-88	(.1	1.52	
Purge Start Time	(mL/min)					Total Casing Volumes Purged	80% Recover Level De (Dx0.20)	pth	Sampli (ft	Level at ng Time omp)	Sam Collec Tim	tion ne		Sample Identif	ication
1433	1452	L	٥٥	3.7	7	N/A	NA		59	37	145	3	WCC_059	_WG201003	2201
Notes: (uni Purging will consecutive	Notes: (units) [stabilization criteria] Purging will continue until three consecutive measurements are within stabilization criterion.				1		Field Parameter PID (ppm):	'S			DRI	DUP U M NO			

Project Nam	VIRONMENTAL, IN		Sitewide A	nnual Samp	ling Ma	nr-10		Date:			3 /	2 5 / 2010		
Project No.:		o o i domey,	1155.01					Prepared	bv:	1	Ben 5.	* / 		
Well Identifi	cation:		WCC 06					Weather:			Partly C	ladu		
	nt Point Descript	ion:	TUC					Pump Int		7S		Screen:	60 - 90)
Α	В		С	D = 0	: - B	E =	B - A		G		Н	l	J	K = H x I + J
Depth to LNA (ft-bmp)	Depth to St Water Lev (ft-bmp)	el l	ell Total Depth t-bmp)	Water C Above Intak	Pump	LN/ Thickr	APL ness (f	, Dia	bing meter in)	Vo	ubing olume er/foot)	Tubing Length (feet)	Flow Cell Volume (Liters)	Initial Purge Volume (Liters)
NM	59.22	9		31.78		NI	n	1	1/4	0	.0054	75	0.8	1.21
				Gallons/Foo	ot		Field	d Equipmen	nt: YSI, E	Dedica	ated Low-fl	ow		1
Well Dia	ameter (inches) = 4	0.	75	2	4	6	Purç	ge Method:	Micropur	ge				
F - Gallo	ns per foot of casi	ng 0.	02 0	.16 0	.65	1.47	Well	Condition:	: 6 e	od				
Time	Time Flow Controller Settings Volume Purged (Liters)		Flow Ra	1 1 4 1 4 1 4 1	el	Temperature (°C) [+/- 10%]		nductivity (mS/cm) [+/- 10%]	Dissolv Oxyge (mg/L [+/- 10°	en .)	pH [+/- 0.1 pH	ORP (mV) [+/- 10%]	Turbidity (NTU) [+/- 10%]	Observations
	P	revious Stat	ilized Para	meters: 09-1	0-09	23.39		3.66	6.930		7.20	12.60	17.20	
1102	50PSJ/50=1100H	1.75	750	59.27	2	22.41	3.	51	5.9	(7.00	303	1.73	
1104	1	1.75	1	59.	22	22.23	3	.53	6.1	5	7.00	7.25-	2.31	
1106	PRINCIPAL	2.25		39.	22	22.75	3	60	6.0	S	7.01	. 22.3	1.11	
1108		2.75		59.2	ι	22.23		1.62	6.14	,	7.00	17.5	0.97	
[110	<u> </u>	3.25		54.1	lı	22.14	4	3.63	6.0	8	7-00	0 -15.4	0.37	
Purge Start Time	Purge End Flow Purged (Liters) Polyme C Purged (Liters) Polymen C Purged (Liters) Polymen C Purged (Liters) Polymen C Purged (Liters) Polymen C Purged (Liters) Polymen C Purged (Liters) Polymen C Purged (Liters) Polymen C Purged (Liters) Polymen C Purged (Liters) Polymen C Purged (Liters) Purged (Lite				ng nes ed	80% Recover Level De (Dx0.20)	pth	Samp	Level at ling Time		Sample ollection Time		Sample Identi	fication
1057	GIII	250	3.25	N/A	\	NA		5%	22		1111		S_WG201003	
	ts) [stabilization c				Fie	ld Paramete	rs						S_WG201003	25_02
consecutive	otes: (units) [stabilization criteria] surging will continue until three nsecutive measurements are within abilization criterion.			Iron (mg/L)		PID (ppm):		NI	ΛI		DRUM N	IO:		

Project Nam	e: Boeing	•	ty, Sitewide	Annual S	Sampling, M	Mar-10		Date:	***************************************		3 /	25 / 2010		
Project No.:		,	1155.0					Prepar	ed by	: /	00			
Well Identific	cation:		WCC (Weath			איז ט אי			
Measuremer	nt Point Descrip	tion:	TOC.N		**			Pump	Intake	e:	र इ	Screen:	60 - 90	
А	В		С	L	D = C - B	Ε	= B - A		G		Н		J	K=HxI+J
Depth to LNA (ft-bmp)	PL Depth to Si Water Lev (ft-bmp)	/el	Well Total Depth (ft-bmp)	Abo	ter Columi ove Pump ntake(ft)	L	NAPL (ness (i		Tubino Diameto (in)		Tubing Volume (Liter/foot)	Tubing Length (feet)	Flow Cell Volume (Liters)	Initial Purge Volume (Liters)
NA	58.81		90		16	٨	JA		1/4		0.0054	85	0.75	1.2
				Gallons	s/Foot	·	Field	d Equipn	nent:	YSI, De	dicated Low-	flow		
Well Dia	meter (inches) = 4		0.75	2	4	6	Pur	ge Metho	d: Mic	ropurge)			
F - Gallor	ns per foot of cas	ing	0.02	0.16	0.65	1.47	Wel	l Conditi	on:	Goo	Ğ			
Time	Time Flow Controller Settings Volume Purged (Liters)			(ate	Water Level (ft-bmp)	Temperatur (°C) [+/- 10%]	ŀ	nductivit (mS/cm) [+/- 10%]	ty	issolve Oxygen (mg/L) [+/- 10%]	pH [+/- 0.1 p	ORP (mV) [+/- 10%]	Turbidity (NTU) [+/- 10%]	Observations
		Previous St	tabilized Para	ameters: (09-11-09	23.92		2.19		5.340	7.84	-6.00	1.50	
1351	CC psi	1.4	350) 5	78.82	23.02		2.500		4.40	7.39	182.1	6	
1354	60 ps.	2.5	35		8.82	22.86	1	2.511		4.27	7.40		1 %	
1357	60 ps 1	3.5	351		8.92	22.78		2.510		4.33	7.41	179.8		
1400	60 psi	طا. 4	350) 5	58.82	22,73		2.505		4.34	7.41	179.8		
1403	60 ps 1	5,6	35	5	ેલ કર	22.64	- / -	2.497	- 2	1.3%	7.42	- 179.9	. 3	
Purge Start Time	Time Time Flow (mL/min) Pu			ne C	Total Casing olumes Purged	80% Recove Level D (Dx0.20	epth		ter Lev	Time	Sample Collection Time		Sample Identi	fication
1347	1407	350	6		N/A	NA	\		58.8	2	1405	WCC_07	S_WG201003	25 _01
Notes: (unit	s) [stabilization o			F	ield Paramet	ers					UP:			
consecutive i	urging will continue until three unsecutive measurements are within abilization criterion.			s Iron (mg/	/L)	PID (ppm):			NM		DRUM	NO:		

Project Name	e: Boeina	C-6 Fa	cility. Si	tewide Annu	al Sampling, N			Date:		3	1 251 2010)	
Project No.:				1155.010	- - - -			Prepared	by:	DM .	600		
Well Identific	ation:		N	VCC 09S				Weather:	clo	oudy			
Measuremen	t Point Descript	tion:	Toc	. N				Pump Int	ake:	75	Screen:	60 - 9	0
A	В		С		D = C - B	E =	B - A		G	Н	I	J	K=HxI+J
Depth to LNA (ft-bmp)	PL Depth to St Water Lev (ft-bmp)		Well T Dep (ft-bn	th	Water Colum Above Pump Intake(ft)	LN	APL ness (ft)	Dia	bing meter in)	Tubing Volume (Liter/foot)	Tubing Length (feet)	Flow Cell Volume (Liters)	Initial Purge Volume (Liters)
NА	61.68		90	;	13	N	A	1	1/4	0.0054	95	0.75	1.3
				Gall	lons/Foot		Field	Equipmen	nt: YSI, De	edicated Lov	v-flow		
Well Dia	meter (inches) = 4		0.75	2	4	6	Purg	e Method:	Micropurg	е			
F - Gallor	s per foot of casi	ng	0.02	0.16	0.65	1.47	Well	Condition:					
Time	Time Flow Controller Settings Volum Purge (Liters			Flow Rate (mL/min)	Water Level (ft-bmp)	Temperature (°C) [+/- 10%]	1) (1	nductivity mS/cm) +/- 10%]	Dissolve Oxyger (mg/L) [+/- 10%	n pH [+/- 0.1	pH] OR (m\ [+/- 10	') (NTU)	Observations
	F	revious	Stabilize	ed Paramete	ers: 09-11-09	22.11		2.13	5.570		0 103.		
1135	62 ps.	1.5	S	300	61.84	20.78		005	4.90	7.3		567	
1138	62 ps.	2.1	4	300	61.86	20.93		. Ċ(\	4.88				
	OZ ps.	3.3	3	300	61.85	20.99	2	.003	4.77				
1144	62 ps	٦. إن	2	308	61.95	21.16	2	000	4.97				
1147	62 psi	5.		300	61.86	21.22	2	.005	4.89	1 8 4	8 190		
(150	62 psi	(c -	0	<u>366</u>	61.85	21.28	2	.003	4.8	7.3	7 190.	2 4	
Purge Start Time	Time Time Flow (mL/min)				Total Casing Volumes Purged	80% Recove Level Do (Dx0.20)	epth	Sampl	Level at ling Time bmp)	Sample Collectic Time		Sample Ident	ification
1130	1210	300	>	(b	N/A	NA		[al	. 95	1153		09S_WG201003	3 25 _01
Notes: (units	s) [stabilization c				F	ield Paramete					DUP:		
consecutive r	urging will continue until three onsecutive measurements are within abilization criterion.			Ferrous Iron		PID (ppm):	(HEMets	m916	DRUM	I NO:		

	TRONMENTAL, IN	************						T-2		15/0	Wil-	0.169	1510040		***************************************
Project Nam	e: Boeing	C-6 Fac			al Sampling, N	/ar-10		Dat			P100		LS / 2010		
Project No.:				55.010					pared		Din				
Well Identific				C_12S					ather:		o d d			60 00	
Measuremer	t Point Descript	tion:	TOC	, N				Pur	np Inta		75		Screen:	60 - 90	
A	В		С		D = C - B	E	= B - A		(G		Н	I	J	K=HxI+J
Depth to LNA (ft-bmp)	PL Depth to St Water Lev (ft-bmp)	rel	Well Tot Depth (ft-bmp		Water Columi Above Pump Intake(ft)	. L.	NAPL kness ((ft)	Dian	oing neter	Vo	ubing olume er/foot)	Tubing Length (feet)	Flow Cell Volume (Liters)	Initial Purge Volume (Liters)
NA	58.07		90		17	i	۵)		1	/4	0	.0054	95	0.75	1.3
				Gall	ons/Foot		Fiel	ld Equ	uipmen	t: YSI, E	edica	ated Low-flo	ow		
Well Dia	meter (inches) = 4		0.75	2	4	6	Pur	ge M	ethod:	Micropur	ge				
F - Gallor	ns per foot of casi	ing	0.02	0.16	0.65	1.47	We	II Con	dition:	G	000)			
Time	Time Flow Controller Settings Volume Purged (Liters)				Water Level (ft-bmp)	Temperatu (°C) [+/- 10%]	re Co	ondud (mS/d (+/- 10	ctivity cm) D%]	Dissolv Oxyge (mg/L [+/- 10°	en .)	pH [+/- 0.1 pH	ORP (mV) [+/- 10%]	Turbidity (NTU) [+/- 10%]	Observations
L	F	Previous	Stabilized	Paramete	rs: 09-10-09	21.77		1.6	9	6.420		7.15	31.00	2.65	
0930	58 psi	1:5	<u> </u>	300	58.16	19.99		'ءَ ن	79	5 -3	3	7.39	214.9		
D933	58 051	2.4	ì .	300	58-17	20.21	ų.	1.6	80	5.2	7	7.37		6	
0936	58 psi	3.3	>	300	58.15	20.30		1.6		5.1	9	7.36	214.0	5	
6939	5 & PS 1	4.2	- I	300	58.16	20.49		اعا - ا		5.2	ન	7.35	214.0	5	
0942	54 psi	5.1	(3 t d	58.16	20.41		! - 6 (٥٥	5.2	5	7.35	214.1	6	
										\$ · · ·					
Purge Start Time	Time Time Purged (Liters)					80% Recov Level (Dx0.2	Depth	ater	Sampl (ft	Level at ling Time bmp)		Sample collection Time		Sample Identi	
0925	0944	300	2	5	N/A	N	A		58	3.16		0943		S_WG201003	25 _01
Notes: (unit	s) [stabilization				F	ield Parame	ters					DU			
Purging will consecutive	otes: (units) [stabilization criteria] urging will continue until three onsecutive measurements are within tabilization criterion.			Ferrous Iron NM		PID (ppm):			NN	Л		DRUM N	O:	- Canada	

QA/QC SAMPLE IDENTIFICATION FORM

Project Name: Boeing Former C-6 Facility, WDR/Semi-annual Sitewide Sampling, March 2010 Project No.: 1155:010

Date	Time	QA/QC Sample Type (Duplicate, Field Blank, Equipment Blank, Split)	Sample ID	Sample Location	Primary Sample Reference	Analytical Methods	Organic-Free Water Source	Field Personnel	Comments
.03/22/10	14:04	Equip. Blank	EB_AV20100322_01	.		8260B	TA-I	BS	
03/22/10	_	Trip Blank	TB_AV20100322_01	-		8260B	TA-I	<u>-</u> -	
03/23/10	15:26	Equip. Blank	EB_AV20100323_01	± ·,		8260B	TA-I	DM	
03/23/10	10:51	Duplicate	MWC024_WG20100323_02	MWC024	MWC024_WG20100323_01	8260B		BS	
03/24/10	13:45	Equip. Blank	EB_AV20100324_01			8260B	····TA-I	BS	
03/24/10	_	Trip Blank	TB_AV20100324_01	=-		8260B	TA-I	<u></u>	
03/24/10	13:12	Duplicate	MWC016_WG20100324_02	MWC016	MWC016_WG20100324_01	8260B		DM	
03/25/10		Trip Blank	TB_AV20100325_01			8260B	TA-I		
03/25/10	11:11	Duplicate	WCC_06S_WG20100325_02	WCC_06S	WCC_06S_WG20100325_01	8260B		BS	
03/25/10	11:03	Duplicate:	MWC022_WG20100325_02	MWC022	MWC022_WG20100325_01	8260B	m.	DM	
03/26/10	***************************************	Trip Blank	TB_AV20100326_01			8260B	TA-I		
	***************************************			***************************************					
***************************************	nace cincincia de decimiento de decimiento acercina								
anter transcrivent anterior de									e provincia de destinado a destinado a destinado de desti
	reconstitute constitute		***************************************	unereduszked	ero d'universir un mitrate con mitrate con mitrate con mitrate con mitrate con mitrate con mitrate con mitrate				
		•				econococococococococococococococococococ		ecucior armicae accaminator armicae armicae armicae armicae	
oororinineese esiresireese esiresireese esiresireese esiresireese esiresireese esiresireese esiresireese esiresi	necessiasiasiasiasiasiasiasiasiasiasiasiasia	eccaceina he ó an lucina he ó an lucina ha he ina lucha he ina lucina he ó an lucina he ó an lucina adecan luce				demicrosconimos coe animeso con invocesor animeso con invoce	ances e constitucio e si cultura se constitucio e si cultura se constitucio e constitu	annuere entre error entre error entre entre error entre entr	
rior consistence consistence consistence con sistence con sistence con consistence con consist	eredeskede skedesked skedeskedesk			Mnycataacascascascascascascascascascascascasca		eccoloriuministriaministriaministriaministriaministriaministri			
		a construir de la cinación de la cinación de la cinación de la cinación de la cinación de la cinación de la ci							

[.] S.Projects/1155 Boeing Former C-6 Facility/Groundwater Monitoring/March 2010/Completed Field Forms/Gagc sample id form_20100326.xlsx]. Sheetl

16 Technology Drive, Suite 154

Boeing CoC No. AV20100323C

$\sim \Delta \tau$	VOCET				nve, Suite ia 92618 - 2					U1													3 3 3				1000	
ENVI	RONMENTAL, INC.			TEL ((949) 296-0 (949) 296-0	977				(CH	All	V (OF	C	U	ST	OL	Y	'R	E	<u> </u>)R	D				
Project Informatio	on:													, ,		A	nalys	s			,		,		 ,	,	,	_
Site Name	Boeing Former C-6 Fa	cility, WDR	Sampling,	March 20	010							H	4	11	LI	4	4	н	H	:	<u>1-1</u>	H	H			H		
Site Address	Los Angeles, CA											and NDMA±	1	1	'				Ì		7	, ,				171		İ
Project No.	1155.010											and)						(aoo)										
Project Manager	Michael Rendina							1				8270	(2:					Ö P		(7199)				SO4)				
Sampled By	Blaine Tech										hane	ane ((200				8)	Demand	Solids	.() w				Ci, S		SE	o.	
Turn-Around-Time	Standard TAT]		6	spic	on G	diox:	etals			ved)	09) s		og p	omiu.	MOL	0.7		102,		Solic	es sp test)	İ
Sample	e Identification	Sample Date	Sample Time	Matrix	No. of Critners.	Lab I.D. Number		VOCs (8260B)	TOC (EPA 9060)	Volatile Fatty Acids	Diss. Hydrocarbon Gases (ethane, ethene, methane)	SVOCs incl 1,4-dioxane (8270) (1625)	CAM Title 22 Metals (200.7)	Flashpoint	Cyanides (total)	Sulfides (dissolved)	Pesticides/PCBs (608)	Chemical Oxygen	Total Suspended	Hexavalent Chromium	pCBSA - 314.0 MOD	Perchlorate 314.0	Boron-200.7	Anions (NO3, NO2, Cl, 8 EPA 300.0	Chloride EPA 300.0	Total Dissolved EPA 160.1	Dehalococcoides spp. Strains (qPCR test)	
CMW026_WG201	00323_01	03/23/10	10:58	WATER	12			X	Х	Х	Х													Х			Х	
RZCMW001_WG	20100323_01	03/23/10	9:59	WATER	12			X	х	Х	Х	100										i Da	20		·	1	Х	
CMW002_WG201	00323_01	03/23/10	11:39	WATER	19			X	Х	Х	х	X X	X							Х	-	X	\\\	<u> </u>	Х	×	X	
RZCMW002_WG	20100323_01	03/23/10	8:31	WATER	19			x	Х	X	X	1	X							X	X	*	-	X	<u> </u>		X	
4WC024_WG201		03/23/10	10:51	WATER				X	Х		X	<u> </u>			1	l t	160				<u> </u>	 _	}	Ĺ			-	
MWC024_WG201	00323_02	03/23/10	10:51	WATER				X			ļ				1		/ <i>Et</i> !					-		l		Bul	-	
IRZCMW003_WG	20100323_01	03/23/10	11:33	WATER	23		\perp	Х	Х	Х	X	X	*	X	×	X	×	X	×	Х	1	×	×	Х		X	X	
TB_AV20100323_	_01	03/23/10		WATER	3			X				Strong Co.		-	***************************************	annear Brit	- Section of Section o	AND DESCRIPTION	Opportunation						-	HU	(Q)	
							1 1		5	A	-ah	120		0 /7	S. C.	×	9	- 4		967 C	or le	, «	269	1	06		50b	
				Ica						Possi	ved by		- Water		Continue de la contin				000000000000000000000000000000000000000		Com	npany	topicon de la constante de la			H		
Relinquished by Printed Name:). i.d/s I		Date: 7 ~	23.12	mpany						Name:		7_	10/	10	2000	DR.	Date:	3/23	110	1			-		-		3
Signature:	lavid Lieberm	* 	Time: 13.		Avocet Envi	ironmental, In	C.			Signati	1L6	1	10		<u>ري ن.</u> سروسده				-t		'	To	7	_/	_	*	anne de la constante de la con	itanaanija
Printed Name:	a v Carren		Date:				-			Printed	Name:							Date:										
Signature:			Time:							Signati	ure:	<i>U</i>						Time:										
Printed Name:			Date:							Printed	Name:							Date:										
Signature:			Time:							Signati	ure:							Time:			<u> </u>							
Sample Receipt						Billing	g Informa	ation					Τ															
Lemperature	°C			Bill	To: A\	ichael Rendina, I /OCET ENVIRO Technology Div rine, CA 92618-2	NMENTA re, Suite		1C.				Prim Plea	ary DH se bill t	IG ana :o Avoi	lyses w cet. Ple	re over ill cont ease rep ike Ren	inue to ort el	be ar ectroni	nalyzeo ically i	d by AT n accor	TL. rdance				ards. I	lfany	

COC Seal (Y/N/NA)

Billing Information

Michael Rendina, P.G.

Irvine, CA 92618-2327

Bill To:

AVOCET ENVIRONMENTAL, INC.

16 Technology Dive, Suite 154

C:/Documents and Settings/DevictMy Documents/Avacett1155/FieldForms/master.coc_av201003

Total Containers

COC Seal (Y/N/NA)

remperature

°C

DHC PCR Analyses require overnight delivery to NorthWind in Pittsburgh, PA

Please bill to Avocet. Please report electronically in accordance with Boeing standards. If

Primary DHG analyses will continue to be analyzed by ATL.

any questions, please call Mike Rendina @ (949) 296 0977 Ext.103

16 Technology Drive, Suite 154
| Irvine, California 92618-2327
| IMENTAL, INC. TEL (949) 296-0977
| FAY (949) 396-0978

CHAIN OF CUSTODY RECORD

ENVIE	RONMENTAL, INC.				149) 296-					L	nH	IIV	U			JO			7 1		U	UT		,			ł
Project Informatio	n:				·					,						Ana	lyses			1]
Site Name	Boeing Former C-6 Fac	cility, Sitewic	ie Sampli	ng, March	2010							<		Π						Π,		= }	10	لا	r		
Site Address	Los Angeles, CA											inci 1,4-dioxana (8270) and NDMA															Ì
Project No.	1155.010									}		P. G						<u>Q</u>			.	. 1					1
Project Manager	Michael Rendina											270)	2					3		8				₹ I			
Sampled By	Blaine Tech	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									Gases ethane)	9	200					nan	es S	(7199)	. 1			8	_	.	
Tum-Around-Time						***************************************				ş	drocarbon Gases ethene, methane)	EXQ.	Metals (200.7)			1	88	Ū.	Soli	m Fr	8		ľ	2, 0		£ €	
			<u> </u>			T		8	8	y Acids	ene,	4,	22 Me		až (s	solve	CBs	xyger	nded	Chro	4.0 %	314		ž	P .	8 % 5 %	
Sample	e Identification	Sample Date	Sample Time	Matrix	No. of Cntnrs.	1		VOCs (8260B)	TOC (EPA 9060)	Volatile Fatty	Diss. Hydrocarbon (ethane, ethene, m	SVOCs incl (1625)	CAM Title 2	Flashpoint	Cyanides (total)	Suffides (dissolved)	Pesticides/PCBs (608)	Chemical Oxygen Demand (COD)	Total Suspended Solids	Hexavalerit Chromkum	PCBSA - 314.0 MOD	Perchlorate 314.0	Boron-200.7	Anions (NO3, NO2, CI, SO4) EPA 300.0	Total Dissel EPA 160.1	Dehalococo Strains (qP(
EWC001_WG2010	00324_01	03/24/10	14:10	WATER	15			X(1)			1	K	y	*		H	X	K	×	Х	K	X	X	Х	K		٦
TMW_06_WG201	00324_01	03/24/10	8:13	WATER	11			Х				×	J.							Х	M	K	H	Х	H		
MWB014_WG201	00324_01	03/24/10	9:25	WATER	10			Х				K	Ŋ.							Х	K	K.					
MWC015_WG201	00324_01	03/24/10	10:43	WATER	15			Х				X	H) PK	K	×	×	×	Ħ	Х	H	X	H	Х	×		
MWB012_WG201	00324_01	03/24/10	12:05	WATER	6			Х			Х																
MWC016_WG201	00324_01	03/24/10	13:12	WATER	11			X				K	K							Х	×	H	K	X	X		_
MWC016_WG201	00324_02	03/24/10	13:12	WATER	- 3			X																			_
MW0005_WG201	00324_01	03/24/10	14:21	WATER	15			X		ļ		K	K	1 y	M	K	X	X	X		- 4	K	X	Х	M		
IWC001_WG2010		03/24/10	15:34	WATER	5			Х		ļ										X	\mathbb{X}	Contilling of		NATURAL PROPERTY.	CALCULATION CO.	0	
IRZMW001B_WG	20100324_01	03/24/10	9:29	WATER	6			Х			Х	•	for	In O	1/2	ee	91		< 4	85	£ù,	p 158	*CF	k,	0	en A	
Relinguished by				Com	pany					Rece	ived by	/	1	in and					Service Commence	o de la company	Com	pany		,	C		(A)
Printed Name:	Liebernan		Date: 3-2	4-10	us sat En	vironmental, In		*******		Printed	Name:					***************************************		Date:						ALIENSON OF	forman	James	34
Signature:	202		Time: /7.	-45 ^	vocet En	Mioninental, in	G.			Signat	ure:							Time:									a granting
Printed Name:			Date:							Printed	l Name:							Date:									
Signature:			Time:							Signat	ure:	i	/,-		. ,	-		Time:									_
Printed Name:			Date:							Printed	i Name:	<u></u>	٧L	<u>et</u>	<u></u>	$\frac{\pi}{\pi}$		Date:		410							
Signature:			Time:							Signat	ure:	_	\supset		\geq	>		Time:	(7	(4)							
Sample Receipt						Billing	Infor	mation	n																		1
Total Containers						Michael Rendina, I										s requi Nyses w						nd in Pi	ttsbur	gh, PA			
	°C			Bill T	0;	AVOCET ENVIRO 16 Technology Div Irvine, CA 92618-2	e, Suit						Plea	ase biil questi	to Avo ons, pi	cet. Pl	ease re Il Mike	port ek Rendir	ectron	ically i 949) 25	1 accor 16 09.7	rdance 7 Ext.10		oeing :	standa	rds. If	
COC Seal (Y/N/NA)				.									(1)	Run dil	utions	on the	VOC sa	mple fi	rom E\	WC001							

16 Technology Drive, Suite 154 Irvine, California 92618-2327 TEL (949) 296-0977 EAX (040) 206-0978

CHAIN OF CUSTODY RECORD

				FAX (949) 296-	0978				2 8 # 4	2 N W			~		. •										
Project Information	7:										V-1111				Ana	lyses		,		L	= 1	-	ın	`		
Site Name	Boeing Former C-6 F	acility, Sitewic	ie Samplir	ıg, March	2010						≤								l	11	— I		فاسا	r	.	
Site Address	Los Angeles, CA										2															
Project No.	1155.010										B.						ĝ									
Project Manager	Michael Rendina					;					3270	5					d (C(8				₹			
Sampled By	Blaine Tech			-						ases hane	ne (8				6	man	spi	(Z)				S) S		ا	
Tum-Around-Time	Standard TAT								\$	O PO	dioxe	SE SE			(pg	8	Q F	d So	age G	Q	0		03,	8	2 (F)	
Sample	, ldentification	Sample Date	Sample Time	Matrix	No. of Cntnrs.	Lab I.D. Number	VOCs (8260B)	TOC (EPA 9060)	Volatile Fatty Ackds	Diss. Hydrocarbon Gases (ethane, ethene, methane)	SVOCs incl 1,4-dioxane (8270) and NDMA (1625)	CAM Title 22 Metals (200.7)	Fleshpoint	Cyanides (total)	Suffides (dissolved)	Pesticides/PCBs (608)	Chemical Oxygen Demand (COD)	Total Suspended Solids	Hexavalent Chromitum (7199)	pCBSA - 314.0 MOD	Perchlorate 314.0	Boron-200.7	Anions (NO3, N EPA 300.0	Total Dissolved Solids EPA 150.1	Dehalococcoldes app. Strains (qPCR test)	The state of the s
IRZMW002B_WG2	0100324_01	03/24/10	10:05	WATER	6		X			X																
IRZMW003B_WG2	0100324_01	03/24/10	10:39	WATER	6		Х			Х]								
IRZMW002A_WG2	20100324_01	03/24/10	11:18	WATER	18		Х			Х	×	X	×	X	X	X	K	X	X	JK	A	K	X	×		
IRZMW001A_WG2	20100324_01	03/24/10	12:20	WATER	6		X			X								o and a second		CONTRACTOR DE LA CONTRA	P date to the later of the late	encoprossiones				
IRZMW003A_WG2	20100324_01	03/24/10	12:43	WATER	6		X			Х					<u> </u>	<u>.</u>				<u> </u>					1	
WCC_04S_WG201	.00324_01	03/24/10	15:19	WATER	6		×			X		4	na	ly	T.C	. 0	11	×		*		0		lass	<u> </u>	1
TMW_07_WG2010	00324_01	03/24/10	7:41	WATER	3		X				1	· Comm		6		2000 Date Contract					100	201		Á		_
TB_AV20100324_	01	03/24/10	-	WATER	2		X						<u></u>						Name of the last o	-	-		-	2/	174	
EB_AV20100324_	01	03/24/10	13:45	WATER	3		X																			<u> </u>
Relinguished by				Cor	mpany				Rece	ived by	,									Con	npany	y				
	Lieberman		Date: 3-2	24-10	Nyocot En	vironmental, Inc			Printe	d Name:							Date:	:								1
Signature:		-	Time: /7:	45	WOOGLEN	VIIOIIIIGIRAI, III			Signa	ture:							Time:	:								_
Printed Name:			Date:						Printe	d Name:							Date:									
Signature:			Time:				-,··		Signa		- 1	<u></u>		-			Time:			1_						
Printed Name:			Date:						1	d Name:	1	Ш		KI	M			3/2								
Signature;			Time:						Signa	ture:	\leq	2	\leq		<u> </u>	- 	Time:	: [1]	'ψί	<u> </u>				-		_
Sample Receipt						Billing	Informat	on				<u> </u>														
Lemoerature	PF			841	То:	Michael Rendina, f AVOCET ENVIRO 16 Technology Div Irvine, CA 92618-2	NMENTAL e, Suite 1					Prin Plea any	nary Di ise bill questi	HG ana to Avo ions, pi	slyses v	vill con ease re all Mike	tinue t port el Rendi	to be a lectron ina @ (nalyze nically (949) 2	d by A in acco 196 097	ind in P TL. ordance 77 Ext.1	e with 6			lards. If	
Too ood (1/14/14/)				1																						

16 Technology Drive, Suite 154

Sheet 1 of 2

Boeing CoC No. AV20100325B

ENVIE	VUCET RONMENTAL, INC.		Irvine		a 92618- 949) <mark>296</mark> - 949) <mark>296</mark> -	-0977			C	HA	IN	0	F	Cl	JS	TC)D	Y	RE	EC	Ol	RL)			
Project Informatio	n:														Ans	lyses				£_9	=	ua		······································		
Site Name	Boeing Former C-6 Fac	ility, Sitewic	ie Samplii	ng, March	2010			Ī	≤			1								n	_ =		LU			
Site Address	Los Angeles, CA								and NDMA				}													
Project No.	1155.010	-]								ĝ										_	-
Project Manager	Michael Rendina							_	270)	6					(COD)		8				Ŧ			Validation	Validation	da de
Sampled By	Blaine Tech							88.08	90	(2002.7)					T SE	*	15				1, 504)			Α S	٧a	\$
Turn-Around-Time	Standard TAT]	S te	dioxa	rtais			8	9	ا ا	Solids	m.	Ş	0		52, C	Solid	es app.	1 Data	2 Data	Darts
Sample	dentification	Sample Date	Sample Time	Matrix	No. of Cntnrs.	Lab I.D. Number	VOCs (8260B)	Diss. Hydrocarbon Gases (ethane ethane methane)	SVOCs incl 1,4-dioxane (8270) (1625)	CAM Title 22 Metals	Flashpoint	Cyanides (total)	Sulfides (dissolved)	Pesticides/PCBs (608)	Chemical Oxygen Demand	Total Suspended	Hexavalent Chromkum (7199)	PCBSA - 314.0 MOD	Perchiorate 314.0	Boron-200.7	Anions (NO3, NO2, CI, S EPA 300.0	Total Dissolved: EPA 160.1	Dehalococcoider Strains (qPCR te	Target for Ther 1	Target for Tier 2	Target for Tier 3 Data Validation
AW0077UB_WG20	100325_01	03/25/10	9:42	WATER	6		Х	X			TO SENSOR PROPERTY.	THE PERSON NAMED IN	To the same of the	- Contract	200000000000000000000000000000000000000				The second							
EWB002_WG2010	0325_01	03/25/10	10:09	WATER	6		Х	X		A	ß				6	,					-			\times		
AW0073C_WG201	.00325_01	03/25/10	10:41	WATER	6		Х	Х		An) by	Z.C	6	a (/	*	X	600	4	00	n C	p ly	S. C. C.				
WCC_06S_WG201	00325_01	03/25/10	11:11	WATER	3		Х				and the same of th	and the same of	NAME OF TAXABLE PARTY.	Name of Street, or other Persons		The state of the s	annual la		0		0	Q.		\times		
WCC_06S_WG201	.00325_02	03/25/10	11:11	WATER	3		X											Sing	1	D						
MWB027_WG2010	00325_01	03/25/10	11:45	WATER	7		X	X									Х		1			1.0		\times		
AW0075UB_WG20)100325_01	03/25/10	12:53	WATER	- 6		X	X											1			[6				
AW0064UB_WG20)100325_01	03/25/10	13:30	WATER	6		X	X																		
AW0074UB_WG20	0100325_01	03/25/10	14:08	WATER	14		X	X	K	X							Х	K		K		×		\geq		
WCC_03S_WG201	.00325_01	03/25/10	10:35	WATER	18		X(1) X	ľ		K	74	H	X	M	X	X	×	K	K	Х	X				
MWB006_WG2010	00325_01	03/25/10	12:18	WATER	6		X(1						-	<u> </u>												
AW0055UB_WG20	0100325_01	03/25/10	15:06	WATER	6		X	+		ļ		•		ļ				<u> </u>						ل		\sqcup
IRZB0095_WG201	.00325_01	03/25/10	7:49	WATER	6		X	Х	ļ					<u></u>										\geq		
Relinquished by Printed Name:	Li-beman		Date: 3-	25-17	npany vocet En	vironmental, Inc	D.		Printed	ived by I Name:	<		gi		/(vu			3) (z.		Com	npany	A				
Signature:	57 0		Time: 17	7/					Signat	Name:		\sim			···,		Time:									
Signature:			Time:					•	Signat								Time:									4
Printed Name:		 	Date:						+	Name:							Date:			<u> </u>						-
Signature:			Time;						Signat								Time:									and the same of th
Sample Receipt						Billing	Informatio	ก																		一
i i emperature	c	•		вій Т	o: A	Aichael Rendina, F NOCET ENVIROR 6 Technology Divervine, CA 92618-2	NMENTAL, e, Suite 154				- /	Prim Pies any	ary Di se bill questi	HG ana to Avo ons, pl	lyses w cet. Pl ease ca	re over ill cont ease re ill Mike VOC sa	tinue ti port el Rendii	o be an ectroni na <i>@</i> (S	nalyzed ically ir 949) 29	i by AT n accor 96 097	L. Idanes 7 Ext.1	with B		rtanda	rds. i	

16 Technology Drive, Suite 154 Irvine, California 92618-2327 TEL (949) 296-0977 FAX (949) 296-0978

CHAIN OF CUSTODY RECORD

				FAX (949) 296	-0978	l																				
Project Information	7:							, .			····	,		,		Anal	yses				H	= 1	10	חו	1		\dashv
Site Name	Boeing Former C-6 Fac	ility, Sitewic	ie Samplin	g, March	2010					≤										l I	-8 #		7		ارا	1	į
Site Address	Los Angeles, CA									Š							1								1		
Project No.	1155.010									Brug						(aoo)							İ		ç	_	ç
Project Manager	Michael Rendina						1			270)	5					Š.		8				% 0.0€		1	Validation	Validation	datk
Sampled By	Blaine Tech								868	8)	280					mark	5	n (7.1				- 1			N N	, eg.	Val
Tum-Around-Time	Standard TAT	· · · · · · · · · · · · · · · · · · ·							met S	dloxa	steats			ĝ	99	٦ 0	Solids	mari	МОБ	e,		02,	Solid	oldes app CR test)	Dest	Tier 2 Data	Dett
	ldentification	Sample Date	Sample Time	Matrix	No. of Crithrs	i i		VOCs (8260B)	Diss. Hydrocarbon Gases (ethane, ethene, methane)	SVOCs ind 1,4-dioxane (8270) and NOMA (1625)	CAM Title 22 Metals (200.7)	Flashpoint	Cyanides (total)	Sulfides (dissolved)	Pesticides/PCBs (608)	Chemical Oxygen Demand	Total Suspended	Hexavalent Chromium (7199)	pCBSA - 314.0 MOD	Perchlorate 314.0	Boron-200.7	Anions (NO3, NO2, EPA 300.0	0.1	Dehakococcokte Strains (qPCR I	Target for Tier 1 Deta.	Target for Tier.	Target for Tier 3. Data Validation
IRZB0081_WG201	00325_01	03/25/10	8:30	WATER	6			X	Х			- CONTRACTOR -	ARCONO SEC.				-02007209200	manufall 1	SON CONTRACTOR IN	Consession Consession							
MWB020_WG2010	00325_01	03/25/10	10:15	WATER	6			Х	Х												-						
MWC022_WG2010	00325_01	03/25/10	11:03	WATER	3			Χ.			100		œ	Q	1	×		> ₍₂₀	(Sept.)	No C					-	\bowtie	
MWC022_WG2010	00325_02	03/25/10	11:03	WATER	3			X		- Constant	Samuel .								0	Seg.	K	0/9			VG		
WCC_07S_WG201	.00325_01	03/25/10	14:05	WATER	₹ 6			Х	X				820000 850	-		and the same of th	CO.	Section of	-			NAME OF TAXABLE PARTY.					\bowtie
MWC023_WG2010	00325_01	03/25/10	14:40	WATER	₹ 15			Х		X	K	K	1	X	K	M	×	X	A	K	H	X	M	1	72	8	}
MWB007_WG2010	00325_01	03/25/10	15:45	WATER	₹ 3			X			<u> </u>					-			884						- Company		
TMW_14_WG2010	00325_01	03/25/10	7:56	WATER	₹ 5		1	_X	ļ									Х	K					-		\vdash	
TMW_15_WG2010	00325_01	03/25/10	8:52	WATER	12			Х	X	X	K	-	<u>'</u>	-				X					·			<u> </u>	\sqcup
WCC_12S_WG201	100325_01	03/25/10	9:43	WATER	₹ 3			X	ļ					_	<u> </u>		· ·		8-20	190		<u> </u>	200 de		إ	 	\vdash
WCC_09S_WG201	100325_01	03/25/10	11:53	WATER				Х	-	K	1 X		- %.		-	9		X		X		<u> </u>	9K		لـــــ		
MWC004_WG2010	00325_01	03/25/10	12:55	WATER	₹ 15			Х		X	X	X			×	×	34	X	H	K	X	X	A		لــــا		
TB_AV20100325_	01	03/25/10	-	WATER	२ 2			Х														<u></u>	<u></u>				
Relinguished by				Co	mpany					Rece	ived by	·		· · · · · ·							Con	pany					
Printed Name:	Lieberman		Date: 3-2	25-10	Avecet E	nvironmental, In	<u></u>			Printed	d Name:	<u> A</u>	May	21	<u>17</u>	le I	_	Date:	3	2)	7	A	7			
Signature:	216		Time: 174	15	10000 L		<u>. </u>			Signat	ure:		<u></u>	}	\geq			Time:		145			1 11	+			
Printed Name:			Date:							Printe	d Name:							Date:									
Signature:			Time:	[_						Signat					,			Time:			<u> </u>						
Printed Name:			Date:								d Name:							Date:									
Signature:			Time:	L						Signal	ere:							Time:			1		نسنت				
Sample Receipt				\Box		Billin	g Inform	natio	n																		
	°C			Bill	To:	Michael Rendina, AVOCET ENVIRO 16 Technology Dh Irvine, CA 92618-2	NMEN'						Prin Plea any	nary D ise bill quest	HG and to Avo lons, pl	ilyses w cet, Pl ease ca	re aver rill conf ease re ill Mike VOC sa	tinue t port e Rendi	obea lectror na @ (nalyze nically i (949) 2	d by A1 n acco 96 097	L. rdance 7 Ext.:	with I LOS	rgh, PA Boeing		ards. 1	f

16 Technology Drive, Suite 154 Irvine, California 92618-2327 TEL (949) 296-0977 FAX (949) 296-0978

CHAIN OF CUSTODY RECORD

																						A market 11 to		1407044177 - 27		$\overline{}$
Project Information	7:							·	· · · · · ·		, 1	1			Anai	yses			-	Н	= H	10	חו	-	- 1	_
Site Name	Boeing Former C-6 Faci	ility, Sitewid	le Samplin	g, March	2010				₹										1		— . T	ا ت. ا				
Site Address	Los Angeles, CA								and NDMA																	
Project No.	1155.010									1					(cop)									g	8	8
Project Manager	Michael Rendina							_	3270	ا د							68				8			Validation	Validation	dati
Sampled By	Blaine Tech		•					Gases	ne (e	500				6	Demand	şp	u (7.				ŭ ŭ	20			> 8	N / N
Turn-Around-Time	Standard TAT							S E	e 1)	tas			(G	8	a L	1 Solids	mitri	ΔON			02,	Solid	के दे	å	2 Deta	D D
					1		(g)	S S S	4.5	2 Me		otal)	soot	CBs	xyge	apue	Chre	4.0.1	314	7	Ž σ	Ş .	S S	<u>e</u>	Tier 2	ie 3
Sample	ldentification	Sample Date	Sample Time	Matrix	No. of Cntnrs		VOCs (8260B)	Diss. Hydrocarbon Gases (ethane, ethene, methane)	SVOCs incl 1,4-dloxane (8270) (1625) - (see note 1)	CAM Title 22 Metals (200.7)	Flashpoint	Cyanides (total)	Sulfides (dissolved)	Pesticides/PCBs (608)	Chemical Oxygen	Total Suspended	Hexavalent Chromium (7199)	pCBSA - 314.0 MOD	Perchlorate 314.0	Boron-200.7	Anions (NO3, NO2, CI, SO4) EPA 300.0	Total Disso EPA 160.1	Dehalococcoides spp. Strains (qPCR test)	Target for Tier 1 Data	Target for 1	Target for Tier 3 Data Validation
MWG004_WG2010	00326_01	03/26/10	7:57	WATER	10		Х		Х	X							X	Х	Х							
MWG003_WG2010	00326_01	03/26/10	8:48	WATER	10		X		Х	Х							X	Х	Х							
CMW001_WG2010	00326_01	03/26/10	8:00	WATER	4		X											Х								
MWB013_WG2010	00326_01	03/26/10	8:35	WATER	9		X		Х	Х	<u> </u>						X									
TMW_11_WG2010	00326_01	03/26/10	9:23	WATER	4		X											Х]
TMW_10_WG2010	00326_01	03/26/10	10:05	WATER	9		X		Х	Х								Х								
MWC021_WG2010	00326_01	03/26/10	10:50	WATER	10		X		X	X						<u> </u>	Х	Х	Х							<u> </u>
MWG001_WG2010	00326_01	03/26/10	11:43	WATER	15		X		X	Х	X	Х	Х	X	Х	Х	Х	X	Х	Х	Х	Х				
MWC009_WG2010	00326_01	03/26/10	9:38	WATER	15		X		X	Х	X	X	Х	Х	Х	Х	Х	Х	Х	Х	X	Х				
MWB019_WG2010	00326_01	03/26/10	10:37	WATER	5		X				J						X	Х								
MWG002_WG201	00326_01	03/26/10	11:00	WATER	15		X		X	X	X	Х	Х	X	Х	X	X	Х	Х	X	X	Х				
MWC017_WG2010	00326_01	03/26/10	12:09	WATER	5		X										Х	Х								
TB_AV20100326_	01	03/26/10	-	WATER	2		Х																			
Relinquished by				Cor	npany				Rece	eived by	,									Con	npany	′				
Printed Name:) seperman	ζ	Date: 3-2	6-10	wood Er	nvironmental, Inc	•		Printe	d Name:	A	Nd	21	141	lez		Date:	712		.	-	TP	~			
Signature:	50		Time: /5]	15	140001 11	Ten Oranicinal, inc	·		Signa	ture:		7					Time:	15	:15	ļ		1 .	<u> </u>			
Printed Name:			Date:						Printe	d Name:							Date:									
Signature:			Time:						Signa								Time:			<u> </u>						
Printed Name:			Date:						1	d Name:							Date:			-						
Signature:			Time:						Signa	ture:							Time:			<u></u>						
Sample Receipt					· · · · · · · · · · · · · · · · · · ·	Billing	Informati	on_				1		···												1
Total Containers	170					Michael Rendina, F						DHC	PCR A	inalyse IG ana	s requi lyses w	re over	might : tinue t	deliver o be a	y to Ni ralyzei	orthWi d by A'	ind in F TL.	ittsbu	gh, PA			
	C	<u>.</u>		BIII		AVOCET ENVIRON 16 Technology Div	e, Suite 15					Pies any	se bili questi	to Avo ons, pl	cet. Pi ease ca	ease re ili Mike	port e Rendi	lectron na @ (ically i 949) 2	in acco 96 097	rdance 7 Ext.1	03		tanda	reis. i	f :
COC Seal (Y/N/NA)						Irvine, CA 92618-2	321					(1) (or all	SVOC a	nalyse	s, run d	lilution	s if MC	L is el	evated	over 2	10 ug/L	•			

TEST EQUIPMENT CALIBRATION LOG

PROJECT NA	WE Bueing (-6		PROJECT NUI	MBER /00322-3~	-)	
EQUIPMENT NAME	EQUIPMENT NUMBER	DATE/TIME OF TEST	STANDARDS USED	EQUIPMENT READING	CALIBRATED TO: OR WITHIN 10%:	ТЕМР.	INITIALS
YSI 556	10 A 1000 55	3.22.13	P 117 P 119 P 110	7.20 4.10 9.98	7.00 4.00 10.00	18.64 (13~
		U	340107 2375 mu 101100	389925 2112-6-104 162-5-70	3400 ms 137:4mm 100440	18.8106	13~
YSI 556	10 4100055	3.73.13	PH7 PH10	4.5	7.00 4.00 10.00	17.67%	B~
	U	L L	340025 137.5 MV 10:40 DO	3919 225 241:3 m J 99,790	3 90 0 ne3 237.5 m V 100.19U	17.76°C	13~
Y5I 556	104100055	3.24.10	P117 P147 P1110	7.18 4.09 9.88	7-30 4-30 10-30	18.819	B
	L		3900 25 375 M-	398426 2371 mg 115 440	3400 mg 237.5 mg 100.440	18.67%	B~
755 556	104/00055	3.2510	PHT PHY PHIO	690 7.77 793	7.00	18.52%	B-
1		Ů.	340000	3877 N7 2368 8789-00	390 4 h7 2775	18 76%	13,-
75E 356	10 A 1 00055	316.0	P 14 7 P 14 9 P 16 10	7.11	7.00	17.83°C	3~
	- t		2000 Mg 2375 mV 100 1300	387745 24032 8706	3900~> 237.5~~ 100.5%	17.9600	13~

TEST EQUIPMENT CALIBRATION LOG

PROJECT NAM	ne Avocet	@ Boeing C	1-6	PROJECT NUM	MBER 100322.	- છેમ્પ દ	1
EQUIPMENT NAME	EQUIPMENT NUMBER	DATE/TIME OF TEST	STANDARDS USED	EQUIPMENT READING	CALIBRATED TO: OR WITHIN 10%:	TEMP. [©] C	INITIALS
YSI 556 MPS	06F2009 A)	3/22/10 1255	7.00 pH 4.00	7.54 4.03 4.69	7.00 4.00 10.00	20.32	ir Im Im
49. American	Only and a second		SPEC. CONO. 3900 US/cm	3722 us/cm	390045/cm	21.17	Om
go pocazione del recurrente del recu	70 - 10 - 100		O.R.P. 233.5 mV @ 23°C	248.0mV	233.5 mV	22.96	om
and the state of t	100		D. O. 9/0 SAT (ambient)	96.4%	100.3%	26.37	pm
		3/23/10	PH 10.00	6.85 10.11 4.02	7.00 10.00 4.00	19.39 19.20 19.41	DM DM
Miles college de la college de		200	SPEC. COND. 3900us/cm	3891 us/cm	3900 us lem	19.47	DM
o desperation of the second			0. R.P. 239.5 mVC 18.5°C	240.9mV	239.5mV	18.62	Din
The state of the s			D. O. Olosa T Cambrent	110.7°10	99.80%	16.55	pm
er monesture traveller av de	or of the control of	3/24/10	PH 4.00	6.79 3.91 9.86	7.00	18.23	Din Om Om
		Section 1	SPEC. COND. 3900451cm	3882 45/cm	3900 uS/cm	18,61	Om
To a contract of the contract			0.R.P.	241.9mV	241.cmV	17.43	DM
		•	0.0.0% SA (ambient)		100.3%	15.90	om

TEST EQUIPMENT CALIBRATION LOG

PROJECT NAM	ne Avocet	C Boeing C	-C	PROJECT NUI	MBER /00322-6	WI	
EQUIPMENT NAME	EQUIPMENT NUMBER	DATE/TIME OF TEST	STANDARDS USED	EQUIPMENT READING	CALIBRATED TO: OR WITHIN 10%:	TEMP. [∂] Ĉ	INITIALS
KI 550 MPS	06F2009 AD	3/25/10000	7.00 pH 10.00 4.00	7.10 4.59 3.95	7.00 10.00 4.00	17.65 17.74 17.86	om om
		and Spines	SPEC COND. 300 ys km	3970 US / Em	3900 us lan	17.6	0m
unicontrol de control		The second secon	0.R.P. 240 mve16°C	239.6 MV	240.0 mV	18.15	9m
		***************************************	D.O. Olo SAT (combient)	91.7%	100.2 3/0	16.20	Din
The Address of the Ad		3/26/10	PH 4.30	6.93	7.00 4.00 15.80	16.38	pm pm
poceedid verification	to in Advances reasonables	<u>physiologistalises</u>	SPEC. COND. 3900 QS/cm	3726 45/cm	3900 ws/cm	16.97	om
es federal de seguina	Meta-Assessand	Design constitution of the second constitution o	0.R.P. 244 mue 150c	246.0 mV	244.0 mV	15.17	Am
Establishment of the second		*	D.O. Ols SAT (ambient)	102.7%	100,4%	15.06	UM